早教吧 育儿知识 作业答案 考试题库 百科 知识分享

一道立体几何方面的问题正三棱锥一定有外接球和内切球吗?为什么?

题目详情
一道立体几何方面的问题
正三棱锥一定有外接球和内切球吗?为什么?
▼优质解答
答案和解析
一定有的.
给你证明方法吧:
1、正三棱锥的外接球半径求法:
设A-BCD是正三棱锥,侧棱长为a,底面边长为b,
则外接球的球心一定在这个三棱锥的高上.设高为AM,连接DM交BC于E,连接AE,然后在面ADE内做侧棱AD的垂直平分线交三棱锥的高AM于O,则0就是外接球的球心,AO,DO是外接球的半径.
(当三棱锥的侧棱与它的对面所成的线面角小于90度时,即角DAE小于90度时,球心在棱锥的内部;当线面角等于90度时,球心恰好在底面正三角形的中心M上;当线面角大于90度时,球心在棱锥的外部,在棱锥高AM的延长线.下面我给出的解法是第一种情况,球心在棱锥的内部.另两种情况你自己可以照理推出.)
设AO=DO=R
则,DM=2/3DE=2/3*2分之根号3倍的b=b/根号3
AM=根号(a^2-b^2/3),
OM=AM-A0=根号(a^2-b^2/3)-R
由DO^2=OM^2+DM^2得,
R=根号3倍的a^2÷2倍的根号(3a^2-b^2)
2、内接球半径
同样是这个三棱锥.内接球的球心也一定在这个三棱锥的高上.设高为AM,连接DM交BC于E,连接AE,然后在面ADE内做角AED的平分线交三棱锥的高AM于O,做OF垂直于AE,则0就是内接球的球心,OM=OF=r
AE=根号(a^2-b^2/4)
FE=ME=1/3AM=6分之根号3倍的b,
AF=AE-FE=根号(a^2-b^2/4)-6分之根号3倍的b
AO=AM-r=根号(a^2-b^2/3)-r
由AO^2=OF^2+AF^2得
r=[根号3倍b^2+3b倍根号(4a^2-b^2)]/12倍根号(3a^2-b^2)
看了 一道立体几何方面的问题正三棱...的网友还看了以下: