早教吧作业答案频道 -->数学-->
基本不等式的证明~a,b,c属于R+证明a^3+b^3+c^3≥3abc
题目详情
基本不等式的证明~
a,b,c属于R+ 证明a^3+b^3+c^3≥3abc
a,b,c属于R+ 证明a^3+b^3+c^3≥3abc
▼优质解答
答案和解析
证明:a^3+b^3+c^3-3abc
=(a+b)(a^2-ab+b^2)+c(c^2-3ab)
=(a+b)(a^2-ab+b^2)+c(c^2-3ab+a^2-ab+b^2-a^2+ab-b^2)
=(a+b)(a^2-ab+b^2)+c[(c^2-a^2-2ab-b^2)+(a^2-ab+b^2)]
=(a+b)(a^2-ab+b^2)+c[c^2-(a+b)^2]+c(a^2-ab+b^2)
=(a+b+c)(a^2-ab+b^2)+c(a+b+c)(c-a-b)
=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)
=(a+b+c)[(a^+b^2-2ab)+(b^2+c^2-2bc)+(a^2+c^2-2ac)]/2
=(a+b+c)[(a-b)^2+(b-c)^2+(a-c)^2]/2>=0
所以a^3+b^3+c^3>=3abc成立
=(a+b)(a^2-ab+b^2)+c(c^2-3ab)
=(a+b)(a^2-ab+b^2)+c(c^2-3ab+a^2-ab+b^2-a^2+ab-b^2)
=(a+b)(a^2-ab+b^2)+c[(c^2-a^2-2ab-b^2)+(a^2-ab+b^2)]
=(a+b)(a^2-ab+b^2)+c[c^2-(a+b)^2]+c(a^2-ab+b^2)
=(a+b+c)(a^2-ab+b^2)+c(a+b+c)(c-a-b)
=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)
=(a+b+c)[(a^+b^2-2ab)+(b^2+c^2-2bc)+(a^2+c^2-2ac)]/2
=(a+b+c)[(a-b)^2+(b-c)^2+(a-c)^2]/2>=0
所以a^3+b^3+c^3>=3abc成立
看了 基本不等式的证明~a,b,c...的网友还看了以下:
急救!若a>0,b>0,且a+b=c.求证:(1)当r>1时a^r+b^r<c^r;(2)当r<1 2020-04-05 …
数学不等式已知abc均为正数且a^2+b^2=c^2求证c^3/2 2020-05-17 …
已知2mx-y-8m+3=0,圆c:x^2+y^2-6x-12y+20=0,(1)M∈R,证明:l 2020-05-21 …
组合公式用组合的方法证明:对任意正整数n,C(r,r)+C(r+1,r)+…+C(n,r)=C(n 2020-05-23 …
现将关系模式P分解为两个关系模式P1(C,T,R),P2(C,3,G),那么这个分解______。A 2020-05-23 …
设a,b,c∈R,证明a^2acc^23b(abc)≥0,并指出等号何时成立问题补充:证明:不妨设 2020-06-23 …
微积分题 证明不等式(1)设点(x,y,z)位于第一象限的球面x^2+y^2+z^2=5*R^2上 2020-06-27 …
1.已知a,b,c∈R.a+b+c=1a²+b²+c²=1/2求证c≥02(1)已知a,c是正实数 2020-07-14 …
离散数学设A={1,2,3,4},R为AXA上的二元关系,(a,b)R(c,d)等价于a+b=c+ 2020-07-25 …
设x,y∈R+,a=x+1/y,b=y+1/z,c=z+1/x,求证a+b+c≥6还有一道哈.已知 2020-08-01 …