早教吧作业答案频道 -->数学-->
如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)试探索OE与OF之间的数量关系.(2)当点O运动到何处时,四边形AECF
题目详情
如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.
(1)试探索OE与OF之间的数量关系.
(2)当点O运动到何处时,四边形AECF是矩形,并给出说理过程.
(3)在(2)的前提下,如果四边形AECF是正方形,那么△ABC将是什么三角形呢?请说明理由.
(1)试探索OE与OF之间的数量关系.
(2)当点O运动到何处时,四边形AECF是矩形,并给出说理过程.
(3)在(2)的前提下,如果四边形AECF是正方形,那么△ABC将是什么三角形呢?请说明理由.
▼优质解答
答案和解析
(1)∵MN∥BC,
∴∠OEC=∠ECB,∠OFC=∠FCD.
又∵CE平分∠ACB,FC平分∠ACD.
∴∠ECB=∠OCE,∠OCF=∠FCD,
∴∠OEC=∠OCE,∠OFC=∠OCF,
∴EO=OC,FO=OC,
∴EO=FO;
(2)由(1)知,OE=OC=OF,
当OC=OA,即点O为AC的中点时,
∴OE=OC=OF=OA,
∴四边形AECF是平行四边形,AC=EF,
∴这时四边形AECF是矩形;
∴当点O运动到AC中点时,
四边形AECF是矩形,
(3)由正方形AECF可知,AC⊥EF,
又∵EF∥BC,
∴∠ACB=90°,
∴△ABC是∠ACB=90°的直角三角形.
∴∠OEC=∠ECB,∠OFC=∠FCD.
又∵CE平分∠ACB,FC平分∠ACD.
∴∠ECB=∠OCE,∠OCF=∠FCD,
∴∠OEC=∠OCE,∠OFC=∠OCF,
∴EO=OC,FO=OC,
∴EO=FO;
(2)由(1)知,OE=OC=OF,
当OC=OA,即点O为AC的中点时,
∴OE=OC=OF=OA,
∴四边形AECF是平行四边形,AC=EF,
∴这时四边形AECF是矩形;
∴当点O运动到AC中点时,
四边形AECF是矩形,
(3)由正方形AECF可知,AC⊥EF,
又∵EF∥BC,
∴∠ACB=90°,
∴△ABC是∠ACB=90°的直角三角形.
看了 如图,△ABC中,点O是AC...的网友还看了以下:
元电荷的电荷量e为C,带电体的电荷量都等于e的. 2020-05-13 …
已知椭圆E的焦点在X轴上,焦距为2√3,离心率为√3/2已知点A(0,1)和直线l;y=x+m,线 2020-05-15 …
求教关于复变函数聚点的定义聚点:如果点z的任何邻域中都含有平面点集E中无穷多个点,则称z为E的聚点 2020-06-02 …
某人站在一点,北方为热带,南方为南温带,以西为东半球,以东为西半球,该点为()A.北回归线与160 2020-06-03 …
高数中,关于开集的定义,我有疑问开集:如果点集E中的每个点都是E的内殿,则称E为开集.我的疑问是, 2020-06-06 …
O为原点,PQ在椭圆C上O为原点,PQ在椭圆C:x2/a2+y2/b2=1(a>b>0)上,直线O 2020-06-21 …
已知圆C经(x-1)2+(y-2)2=5经过椭圆E:x2a2+y2b2=1(a>b>0)的右焦点F 2020-06-21 …
已知A、B为抛物线E上不同的两点,若抛物线E的焦点为(1,0),线段AB恰被M(2,1)所平分.( 2020-06-27 …
如何判断一条边是否位于多面体内部、外部?在三维空间中,给定一条边e的端点坐标,以及一个由多个三角面 2020-06-27 …
(2011•丰台区一模)已知椭圆E的焦点在x轴上,离心率为12,对称轴为坐标轴,且经过点(1,32 2020-06-30 …