早教吧作业答案频道 -->数学-->
如图1,在正方形ABCD中,点E是边BC的中点,过点E作AE的垂线交正方形∠BCD的外角的平分线L于点M,(1)判断线段AE、ME的大小关系,并说明理由;(2)如图2,连接AM交CD于点N,连接NE,求证:N
题目详情
如图1,在正方形ABCD中,点E是边BC的中点,过点E作AE的垂线交正方形∠BCD的外角的平分线L于点M,
(1)判断线段AE、ME的大小关系,并说明理由;
(2)如图2,连接AM交CD于点N,连接NE,求证:NE=BE+DN;
(3)如图3,若E点在BC的延长线上,连接AM交射线CD于点N,连接NE,并且NE=13,CN=12,求线段MC的长.
(1)判断线段AE、ME的大小关系,并说明理由;
(2)如图2,连接AM交CD于点N,连接NE,求证:NE=BE+DN;
(3)如图3,若E点在BC的延长线上,连接AM交射线CD于点N,连接NE,并且NE=13,CN=12,求线段MC的长.
▼优质解答
答案和解析
(1)证明:如图1,取AB的中点H,连接EH;
∵AE⊥EF,
∴∠AEF=90°,
∵四边形ABCD是正方形,
∴∠B=∠BCD=90°,AB=BC=CD,
∴∠1+∠AEB=90°,∠2+∠AEB=90°,
∴∠1=∠2,
∵E是BC的中点,H是AB的中点,
∴BH=BE,AH=CE,
∴∠BHE=45°,
∵CF是∠DCG的角平分线,
∴∠FCG=45°,
∴∠AHE=∠ECF=135°,
在△AHE和△ECF中,
,
∴△AHE≌△ECF(ASA),
∴AE=EF;
(2)证明:如图2,延长CB到F,使BF=DN,连结AF.
∵四边形ABCD是正方形,
∴AB=AD,∠ABC=∠D=∠BAD=90°,
∴∠ABF=90°.
∴∠ABF=∠D.
∵AE=ME,∠AEM=90°,
∴∠EAN=45°,
∴∠BAE+∠DAN=45°.
在△ABF和△ADN中,
,
∴△ABF≌△ADN(SAS),
∴AF=AN,∠BAF=∠DAN,
∴∠BAE+∠BAF=∠FAE=45°,
∴∠FAE=∠NAE.
在△FAE和△NAE中,
,
∴△FAE≌△NAE(SAS),
∴EF=EN.
∵EF=BF+BE,
∴EF=BE+DN,
∴EN=BE+DN;
(3)如图3,连结AC,在BC上取点F,使BF=DN,
∵四边形ABCD是正方形,
∴AB=AD=BC=CD,∠ABC=∠D=∠BAD=∠BCD=90°,∠BAC=∠ACN=45°.
∴∠DCE=90°.
∵AE=ME,∠AEM=90°,
∴∠EAN=45°,
在△ABF和△ADN中
∵AE⊥EF,
∴∠AEF=90°,
∵四边形ABCD是正方形,
∴∠B=∠BCD=90°,AB=BC=CD,
∴∠1+∠AEB=90°,∠2+∠AEB=90°,
∴∠1=∠2,
∵E是BC的中点,H是AB的中点,
∴BH=BE,AH=CE,
∴∠BHE=45°,
∵CF是∠DCG的角平分线,
∴∠FCG=45°,
∴∠AHE=∠ECF=135°,
在△AHE和△ECF中,
|
∴△AHE≌△ECF(ASA),
∴AE=EF;
(2)证明:如图2,延长CB到F,使BF=DN,连结AF.
∵四边形ABCD是正方形,
∴AB=AD,∠ABC=∠D=∠BAD=90°,
∴∠ABF=90°.
∴∠ABF=∠D.
∵AE=ME,∠AEM=90°,
∴∠EAN=45°,
∴∠BAE+∠DAN=45°.
在△ABF和△ADN中,
|
∴△ABF≌△ADN(SAS),
∴AF=AN,∠BAF=∠DAN,
∴∠BAE+∠BAF=∠FAE=45°,
∴∠FAE=∠NAE.
在△FAE和△NAE中,
|
∴△FAE≌△NAE(SAS),
∴EF=EN.
∵EF=BF+BE,
∴EF=BE+DN,
∴EN=BE+DN;
(3)如图3,连结AC,在BC上取点F,使BF=DN,
∵四边形ABCD是正方形,
∴AB=AD=BC=CD,∠ABC=∠D=∠BAD=∠BCD=90°,∠BAC=∠ACN=45°.
∴∠DCE=90°.
∵AE=ME,∠AEM=90°,
∴∠EAN=45°,
在△ABF和△ADN中
作业帮用户
2017-10-13
|
看了 如图1,在正方形ABCD中,...的网友还看了以下:
如图所示,求角A+角B+角C+角D+角E+角F的度数 2020-04-05 …
如图,求角A+角B+角C+角D+角E+角F的度数 2020-04-05 …
图不能发.在平行四边形ABCD中,角BCD的平分线CE交AD于E,角ABC的平分线BG交CE于F, 2020-05-01 …
如图 ,求角a+角b+角c+角d+角e+角f的度数如图所示,求角A+角B+角C+角D+角E+角F的 2020-05-15 …
求角A+角B+角C+角D+角E+角F的度数 2020-05-15 …
已知如图,在平行四边形ABCD中,角ABC的平分线交CD于点E,角ADC的平分线交CD于点F.求证 2020-05-16 …
在三角形ABC中,角BAC=90度,AB=AC,角ABC的平分线交AC于点D,过点C作BD垂线交B 2020-05-19 …
已知三角形ABC中,BD是中线,AE⊥BD交BC于点E,角DBC的正切为4/5,BD=15,求AE 2020-06-06 …
已知如图,在三角形ABC的外接圆中D是弧BC的中点,AD交BC于点E,角ABC的平分线交AD于F1 2020-06-06 …
如图7.5-20,求角A+角B+角C+角E+角F的度数? 2020-06-07 …