早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,在等腰直角三角形△OPQ中,∠POQ=90°,OP=22,点M在线段PQ上.(1)若OM=5,求PM的长;(2)若点N在线段MQ上,且∠MON=30°,问:当∠POM取何值时,△OMN的面积最小?并求出面积的最小值

题目详情
如图,在等腰直角三角形△OPQ中,∠POQ=90°,OP=2
2
,点M在线段PQ上.
(1)若OM=
5
,求PM的长;
(2)若点N在线段MQ上,且∠MON=30°,问:当∠POM取何值时,△OMN的面积最小?并求出面积的最小值.
▼优质解答
答案和解析
(1)在△OPQ中,∠OPQ=45°,OM=
5
,OP=2
2

由余弦定理得,OM2=OP2+MP2-2•OP•MPcos45°,
得MP2-4MP+3=0,解得MP=1或MP=3.…6
(2)设∠POM=α,0°≤α≤60°,
在△OMP中,由正弦定理,得
OM
sin∠OPM
OP
sin∠OMP

所以OM=
OPsin45°
sin(45°+α)
,同理ON=
OPsin45°
sin(75°+α)
 …8′
S△OMN=
1
2
×OM×ON×sin∠MON=
1
4
×
OP2sin245°
sin(45°+α)sin(75°+α)
 …10
=
1
sin(45°+α)sin(75°+α)
=
1
sin(45°+α)[
3
2
sin(45°+α)+
1
2
cos(45°+α)]

1
3
2
sin2(45°+α)+
1
2
sin(45°+α)cos(45°+α)]

=
1
3
4
+
3
4
sin2α+
1
4
cos2α
=
1
3
4
+
1
2
sin(2α+30°)
 …14
因为0°≤α≤60°,30°≤2α+30°≤150°,
所以当α=30°时,sin(2α+30°)的最大值为1,
此时△OMN的面积取到最小值.
即∠POM=30°时,△OMN的面积的最小值为8-4
3
.…16