早教吧作业答案频道 -->数学-->
x^5+1因式分解x^2+(x+1)^2+(x+1)^2因式分解
题目详情
x^5+1因式分解
x^2+(x+1)^2+(x+1)^2因式分解
x^2+(x+1)^2+(x+1)^2因式分解
▼优质解答
答案和解析
我们将问题放在实数范围内讨论.
x^n+1因式分解所得的一次因式,必是(x+1),
分解所得的二次因式,必是(x^2+1)或(x^2+mx+1),其中m是常数.
一般说来,n是奇数时,有一个一次因式,其余是二次因式;
n是偶数时,只有二次因式,没有一次因式.
n=3时,可以用公式:x^3+1=(x+1)(x^2-x+1)
n=4时,可以用配方法:
x^4+1=x^4+2x^2+1-2x^2=(x^2+1)^2-2x^2=[x^2+(√2)x+1] [x^2-(√2)x+1];
也可以用待定系数法:
设x^4+1=(x^2+ax+1)(x^2+bx+1)=x^4+(a+b)x^3+(ab+2)x^2+(a+b)x+1
则a+b=0,ab+2=0,解得a=√2,b=-√2,
所以x^4+1=[x^2+(√2)x+1] [x^2-(√2)x+1]
n≥5时,一般要用待定系数法.
n=5时,n^5+1=(x+1)(x^4-x^3+x^2-x+1)
设x^4-x^3+x^2-x+1=(x^2+ax+1)(x^2+bx+1)=x^4+(a+b)x^3+(ab+2)x^2+(a+b)x+1
则a+b=-1,ab+2=1,解得a=(-1+√5)/2,b=(-1-√5)/2,
所以x^5+1=(x+1)[x^2+(-1+√5)x/2+1][x^2+(-1-√5)x/2+1]
n=6时,n^6+1=(x^2+1)(x^4-x^2+1),用待定系数法:
设x^4-x^2+1=(x^2+ax+1)(x^2+bx+1)=x^4+(a+b)x^3+(ab+2)x^2+(a+b)x+1
则a+b=0,ab+2=-1,解得a=√3,b=-√3,
所以x^6+1=(x^2+1)[x^2+(√3)x+1][x^2-(√3)x+1]
随着n增大,难度也加大,用待定系数法可以列出方程组,
例n=7时,n^7+1=(x+1)(x^6-x^5+x^4-x^3+x^2-x+1)
设x^6-x^5+x^4-x^3+x^2-x+1=(x^2+ax+1)(x^4+bx^3+cx^2+dx+1)
=x^6+(a+b)x^5+(ab+c+1)x^4+(ac+b+d)x^3+(ad+c+1)x^2+(a+d)x+1
则a+b=-1,ab+c+1=1,ac+b+d=-1,ad+c+1=1,a+d=-1
但a、b、c、d用通常方法解不出来.
原式-12=[(x²+x)+1][(x²+x)+2]-12
=(x²+x)²+3(x²+x)+2-12
=(x²+x)²+3(x²+x)-10
=(x²+x+5)(x²+x-2)
=(x²+x+5)(x-1)(x+2)
原式=(x²+x+5)(x-1)(x+2)+12
x^n+1因式分解所得的一次因式,必是(x+1),
分解所得的二次因式,必是(x^2+1)或(x^2+mx+1),其中m是常数.
一般说来,n是奇数时,有一个一次因式,其余是二次因式;
n是偶数时,只有二次因式,没有一次因式.
n=3时,可以用公式:x^3+1=(x+1)(x^2-x+1)
n=4时,可以用配方法:
x^4+1=x^4+2x^2+1-2x^2=(x^2+1)^2-2x^2=[x^2+(√2)x+1] [x^2-(√2)x+1];
也可以用待定系数法:
设x^4+1=(x^2+ax+1)(x^2+bx+1)=x^4+(a+b)x^3+(ab+2)x^2+(a+b)x+1
则a+b=0,ab+2=0,解得a=√2,b=-√2,
所以x^4+1=[x^2+(√2)x+1] [x^2-(√2)x+1]
n≥5时,一般要用待定系数法.
n=5时,n^5+1=(x+1)(x^4-x^3+x^2-x+1)
设x^4-x^3+x^2-x+1=(x^2+ax+1)(x^2+bx+1)=x^4+(a+b)x^3+(ab+2)x^2+(a+b)x+1
则a+b=-1,ab+2=1,解得a=(-1+√5)/2,b=(-1-√5)/2,
所以x^5+1=(x+1)[x^2+(-1+√5)x/2+1][x^2+(-1-√5)x/2+1]
n=6时,n^6+1=(x^2+1)(x^4-x^2+1),用待定系数法:
设x^4-x^2+1=(x^2+ax+1)(x^2+bx+1)=x^4+(a+b)x^3+(ab+2)x^2+(a+b)x+1
则a+b=0,ab+2=-1,解得a=√3,b=-√3,
所以x^6+1=(x^2+1)[x^2+(√3)x+1][x^2-(√3)x+1]
随着n增大,难度也加大,用待定系数法可以列出方程组,
例n=7时,n^7+1=(x+1)(x^6-x^5+x^4-x^3+x^2-x+1)
设x^6-x^5+x^4-x^3+x^2-x+1=(x^2+ax+1)(x^4+bx^3+cx^2+dx+1)
=x^6+(a+b)x^5+(ab+c+1)x^4+(ac+b+d)x^3+(ad+c+1)x^2+(a+d)x+1
则a+b=-1,ab+c+1=1,ac+b+d=-1,ad+c+1=1,a+d=-1
但a、b、c、d用通常方法解不出来.
原式-12=[(x²+x)+1][(x²+x)+2]-12
=(x²+x)²+3(x²+x)+2-12
=(x²+x)²+3(x²+x)-10
=(x²+x+5)(x²+x-2)
=(x²+x+5)(x-1)(x+2)
原式=(x²+x+5)(x-1)(x+2)+12
看了x^5+1因式分解x^2+(x...的网友还看了以下:
解方程,加一道化简求值的题目.解方程:(1):2/x+3=1/x-1(2):x/x-3=2+3/x- 2020-03-31 …
已知x/(x^2+x+1)=1/4,求分式x^2/(x^4+x^2+1)的值我查到了2种方法啊貌似 2020-05-12 …
matlab数据拟合函数x=[1:62]y=[ 1 1 1 1 1 1 1 1 1 1 1 1 1 2020-05-16 …
若关于x的方程k/x+1+1/x-1=1/x的平方-1无解,则k的值是A·k=-1 B·k=-1或 2020-05-16 …
暑假作业里的题,请大家指教!8=5,错在哪儿?解方程X+3/X+2+X+5/X+4=X+6/X+5 2020-05-21 …
x→-∞和x→+∞的计算有什么区别,例如lim(x→-∞)(x^2+x-1)^1/2—(x^2-x 2020-06-12 …
1.已知x^2-4x+1=0,则x^4+1/x^4=2.如果方程a/(x-2)+3=(1-x)/( 2020-06-25 …
急,今天八点钟之前就要,六、求下列函数的定义域:(1)f(x)=3/x+1;(2)f(x)=3/x 2020-07-14 …
求不定积分∫x^2+1/(x^2-1)(x+1)dx答案是1/2ln(x^2-1)+1/求不定积分∫ 2020-10-31 …
1.设函数F(X)=X^2+X-(1/4),若定义域为[a,a+1],值域为[-0.5,1/16], 2020-10-31 …