早教吧作业答案频道 -->数学-->
已知圆C:X^2+Y^2-2X+4Y-4=0,是否存在斜率为1的直线L,使以L被圆C所截得的弦长AB为直径的圆经过
题目详情
已知圆C:X^2+Y^2-2X+4Y-4=0,是否存在斜率为1的直线L,使以L被圆C所截得的弦长AB为直径的圆经过
▼优质解答
答案和解析
⊙C:x²+y²-2x+4y-4=(x-1)²/3²+(y+2)²/3²=1.
也就是说⊙C的圆心C的坐标为:C(1,-2),而⊙C的半径r=3.
假设存在这么一条直线L:y=x+b交⊙C于A、B,AB为直径的圆过原点,那么直线L的垂线y=-x与L的交点就是所求圆的圆心D.
而若要满足这个条件,D就是AB的中点,在⊙D中:OD=DA=DB=R.
把直线L代入⊙C:x²+y²-2x+4y-4=x²+(x+b)²-2x+4(x+b)-4=2x²+(2b+2)x+4b-4=0.
根据韦达定理:x1·x2=2b-2;D点的横坐标x=x1+x2=-b-1,y=y1+y2=(x1+b)+(x2+b)=x1+x2+2b=b-1.
AB²=(x1-x2)²+(y1-y2)²=(x1+x2)²-4x1·x2+(y1+y2)²-4y1·y2=(b+1)²-8b-8+(b-1)²-4[x1·x2+b(x1+x2)+b²]=b²+2b+1-8b-8+b²-2b+1-4b+8=2b²-12b+10.
OD²=(b+1)²+(b-1)²=2b²+2
∵AB=2OD,∴AB²=4OD².
也就是说2b²-12b+10=8b²+8,解之:b=(-3±2√3)/3.
即L的方程为y=x-1-(2√3)/3或y=x+(2√3)/3-1.
也就是说⊙C的圆心C的坐标为:C(1,-2),而⊙C的半径r=3.
假设存在这么一条直线L:y=x+b交⊙C于A、B,AB为直径的圆过原点,那么直线L的垂线y=-x与L的交点就是所求圆的圆心D.
而若要满足这个条件,D就是AB的中点,在⊙D中:OD=DA=DB=R.
把直线L代入⊙C:x²+y²-2x+4y-4=x²+(x+b)²-2x+4(x+b)-4=2x²+(2b+2)x+4b-4=0.
根据韦达定理:x1·x2=2b-2;D点的横坐标x=x1+x2=-b-1,y=y1+y2=(x1+b)+(x2+b)=x1+x2+2b=b-1.
AB²=(x1-x2)²+(y1-y2)²=(x1+x2)²-4x1·x2+(y1+y2)²-4y1·y2=(b+1)²-8b-8+(b-1)²-4[x1·x2+b(x1+x2)+b²]=b²+2b+1-8b-8+b²-2b+1-4b+8=2b²-12b+10.
OD²=(b+1)²+(b-1)²=2b²+2
∵AB=2OD,∴AB²=4OD².
也就是说2b²-12b+10=8b²+8,解之:b=(-3±2√3)/3.
即L的方程为y=x-1-(2√3)/3或y=x+(2√3)/3-1.
看了已知圆C:X^2+Y^2-2X...的网友还看了以下:
大圆的直径是1米,小圆的直径是1厘米.那么,下面的说法正确的是()A.大圆的圆周率大于小圆的圆周率 2020-05-14 …
如图,已知P是椭圆x2a2+y2b2=1(a>b>0)上且位于第一象限的一点,F是椭圆的右焦点,O 2020-05-15 …
一张高难度的初中数学试卷1.已知abc≠0,且a+b+c=a²+b²+c²=2则(1-a)²/bc 2020-06-13 …
已知动圆C与圆C1:(x+1)2+y2=1相外切,与圆C2:(x−1)2+y2=9相内切,设动圆圆 2020-07-09 …
1.已知三角形ABC,AB=AC=5,BC=6,求三角形ABC的外接圆.2.圆O的直径AB把圆O分 2020-07-18 …
rt三角形abc中,∠c=90º,ac=3cm,bc=4cm,以c为圆心,下列r为半径的圆,与ab 2020-07-18 …
在极坐标系中,圆C的圆心C(6,6分之派),半径r=6,(1)写出圆C的极坐标方程.(2)若Q点在 2020-08-02 …
关于功率的公式P=W/t和P=Fv,下列说法正确的是A.由P=W/t知,只要知道W和t就可求出任意 2020-08-02 …
如图,有一四边形形状的铁皮ABCD,BC=CD=6,AB=2AD,∠ABC=∠ADB=90°,以C为 2020-12-25 …
如图,有一四边形形状的铁皮ABCD,BC=CD=6,AB=2AD,∠ABC=∠ADB=90°,以C为 2020-12-25 …