早教吧作业答案频道 -->数学-->
4.设消费者对(x1,x2)的效用函数是U=min(x1,x2),X1价格为1,X2的价格为1,消费者的收入是m=100.(1)计算当P1从1变到1/2时对X1需求的变化.(2)计算该变化的Slutsky替代效应和收入效应5.消费
题目详情
4.设消费者对(x1,x2 ) 的效用函数是U= min( x1 ,x2 ),X1 价格为1,X2 的价格为1,消费者的收入是m =100.
(1)计算当P1从1 变到1/2 时对X1需求的变化.
(2)计算该变化的Slutsky 替代效应和收入效应
5.消费者对(x1,x2 ) 的效用函数是拟线性的(quasi-linear utility function) U = x1 + ln x 2,
x1的价格为1,X2 的价格为P2,消费者的收入是m .
(1)求X1,X2的需求函数.
(2)当收入至少为多少时,增加收入不会增加对X2 的消费.
6.设一个人做两期决策,第一期工作,第二期退休,工作的净收入是10000 元,退休期
的退休金为收入的60%.用C1代表第一期的消费开支,用C2 代表第二期的消费开支,她的跨期效用函数是U = c1c2 .
(1)假定有银行可以提供存贷款服务,存贷款利率是10%.问她两期的消费分别是多少?
(2)假定没有这种金融服务,也没有其他投资渠道,问她两期的消费分别是多少?她的效用比第一种情形高还是低.
(1)计算当P1从1 变到1/2 时对X1需求的变化.
(2)计算该变化的Slutsky 替代效应和收入效应
5.消费者对(x1,x2 ) 的效用函数是拟线性的(quasi-linear utility function) U = x1 + ln x 2,
x1的价格为1,X2 的价格为P2,消费者的收入是m .
(1)求X1,X2的需求函数.
(2)当收入至少为多少时,增加收入不会增加对X2 的消费.
6.设一个人做两期决策,第一期工作,第二期退休,工作的净收入是10000 元,退休期
的退休金为收入的60%.用C1代表第一期的消费开支,用C2 代表第二期的消费开支,她的跨期效用函数是U = c1c2 .
(1)假定有银行可以提供存贷款服务,存贷款利率是10%.问她两期的消费分别是多少?
(2)假定没有这种金融服务,也没有其他投资渠道,问她两期的消费分别是多少?她的效用比第一种情形高还是低.
▼优质解答
答案和解析
4.解(1)u=min(x1,x2),显然x1与x2是互补品,且消费比例是1:1;初始的预算约束为x1+x2=100,显然,初始均衡为(x1,x2)=(50,50),u=min(x1,x2)=50.当x1的价格由1下降到0.5时,预算约束为0.5x1+x2=100,根据1:1的消费比例,得到x1=x2=200/3,新的均衡点为(x1,x2)=(200/3,200/3),u=200/3,△x1=+16.7.
(2)斯勒茨基分解以保持原来的消费水平不变化为前提,那么,通过初始均衡点做出预算补偿线,可以发现,与补偿线“相切”的无差异曲线就是原来的无差异曲线,因此完全互补条件下的斯勒茨基分解,没有替代效应,只有收入效应.因此TE(x1)=IE(x1)=16.7,SE(x1)=0.
5.解(1)做消费者最优规划:max u=x1+lnx2,s.t.x1+p2x2≤m,x1,x2≥0,构造拉格朗日辅助函数:L=x1+lnx2+t(m-x1-p2x2),这一规划的库恩-塔克条件为:
[1]L1=1-t≤0,x1≥0,x1*L1=0
[2]L2=(1/x2)-tp2≤0,x2≥0,x2*L2=0
[3]Lt= m-x1-p2x2≥0,t≥0,t*Lt=0
根据多多益善的假定,收入应当花完,因此[3]Lt=0,因此预算约束应当是紧的:t〉0;根据函数的定义:x2>0,那么L2=(1/x2)-tp2=0,所以库恩-塔克条件就化简为如下两种情形:
第一:x1=0,x2>0,t>0,那么:L1=1-t≤0,L2=(1/x2)-tp2=0,Lt= m-x1-p2x2=0,得到需求函数x1=0,x2=m/p2,t=1/m,并且满足参数条件:00.x2>0.t>0,(此时就是存在内点解得情况),得到x1=m-1,x2=1/p2,t=1,并且满足参数条件m>1.
(2)由(1)得到,当收入较低时,只消费x2,当收入较高时,两种商品都消费,临界值为1.在较高收入水平上,x2的消费时固定的,为1/p2,因此当收入至少为1时,收入的增加不会引起x2消费的增加
6.解(1):做跨期最优规划:max u=c1c2,s.t.(1+r)c1+c2=(1+r)m1+m2,这里m1=10000,m2=6000,r=10%,假定消费价格为1.由于不能不消费,即c1,c2>0,因此仅有内点解;得到c1=8500/1.1≈7727.3,c2=8500.
(2)做法同上,但是r=0,c1=c2=8000.显然u(7727.3,8500)>u(8000,8000).效用降低了,
(2)斯勒茨基分解以保持原来的消费水平不变化为前提,那么,通过初始均衡点做出预算补偿线,可以发现,与补偿线“相切”的无差异曲线就是原来的无差异曲线,因此完全互补条件下的斯勒茨基分解,没有替代效应,只有收入效应.因此TE(x1)=IE(x1)=16.7,SE(x1)=0.
5.解(1)做消费者最优规划:max u=x1+lnx2,s.t.x1+p2x2≤m,x1,x2≥0,构造拉格朗日辅助函数:L=x1+lnx2+t(m-x1-p2x2),这一规划的库恩-塔克条件为:
[1]L1=1-t≤0,x1≥0,x1*L1=0
[2]L2=(1/x2)-tp2≤0,x2≥0,x2*L2=0
[3]Lt= m-x1-p2x2≥0,t≥0,t*Lt=0
根据多多益善的假定,收入应当花完,因此[3]Lt=0,因此预算约束应当是紧的:t〉0;根据函数的定义:x2>0,那么L2=(1/x2)-tp2=0,所以库恩-塔克条件就化简为如下两种情形:
第一:x1=0,x2>0,t>0,那么:L1=1-t≤0,L2=(1/x2)-tp2=0,Lt= m-x1-p2x2=0,得到需求函数x1=0,x2=m/p2,t=1/m,并且满足参数条件:00.x2>0.t>0,(此时就是存在内点解得情况),得到x1=m-1,x2=1/p2,t=1,并且满足参数条件m>1.
(2)由(1)得到,当收入较低时,只消费x2,当收入较高时,两种商品都消费,临界值为1.在较高收入水平上,x2的消费时固定的,为1/p2,因此当收入至少为1时,收入的增加不会引起x2消费的增加
6.解(1):做跨期最优规划:max u=c1c2,s.t.(1+r)c1+c2=(1+r)m1+m2,这里m1=10000,m2=6000,r=10%,假定消费价格为1.由于不能不消费,即c1,c2>0,因此仅有内点解;得到c1=8500/1.1≈7727.3,c2=8500.
(2)做法同上,但是r=0,c1=c2=8000.显然u(7727.3,8500)>u(8000,8000).效用降低了,
看了4.设消费者对(x1,x2)的...的网友还看了以下:
求过点P(4,-1,2)并且与直线L:{X+Y-Z=7 平行的直线方程.X-Y-Z=-1}求过点P 2020-05-13 …
个关于数学里直线方程式的问题-.1.求过点P,且平行于直线L的直线方程(1)P(5.2)L:3X- 2020-06-03 …
九宫格题目:+++42++7+二格+9+1++++2三格++++5+8+4四格++6592+18五 2020-06-10 …
厂商的生产函数为Q=L^2/3K^1/3,生产要素L和K的价格分别为W=2和r=1,求:(1)当厂 2020-07-16 …
若直线l的参数x=3+4/5t与y=2+3/5t其中t为参数(4,-1)且与直线l平行的直线l'在 2020-07-30 …
A(1,3).B(-3,1).C(-1,-4).D(5,-2).P(3,4)为平面直角坐标系内五个 2020-07-31 …
计算:(1)l-3l*l6.2l(2)l-5l+l2.49l(3)十六分之一-l-八分之三l(4) 2020-08-01 …
EXCEL2003,在“格式—条件格式”中用=SUMPRODUCT(--(L3,L3:L300))> 2020-11-07 …
你帮我回答的化简函数很厉害,你还可以帮我化简几道题吗?用卡诺图法化简1题L=∑m(0,1,3,5,7 2020-12-23 …
经济学关于长期生产函数的题目,已知企业的生产函数为Q=L^3/4k^1/4,劳动的价格w=3,资本的 2020-12-31 …