早教吧 育儿知识 作业答案 考试题库 百科 知识分享

整数x0,x1,x2,x3,…,x2003满足条件:x0=0,|x1|=|x0+1|,|x2|=|x1+1|,|x3|=|x2+1|,…,|x2003|=|x2002+1|.(1)试用仅含x2003的代数式表示|x1+x2+x3+…+x2002+x2003|,(2)求|x1+x2+x3+…+x2002+x2003|的最小值.

题目详情
整数x0,x1,x2,x3,…,x2003满足条件:x0=0,|x1|=|x0+1|,|x2|=|x1+1|,|x3|=|x2+1|,…,|x2003|=|x2002+1|.
(1)试用仅含x2003的代数式表示|x1+x2+x3+…+x2002+x2003|,
(2)求|x1+x2+x3+…+x2002+x2003|的最小值.
▼优质解答
答案和解析
(1)由已知得:
x
2
1
x
2
0
+2x0+1
x
2
2
x
2
1
+2x1+1
x
2
3
x
2
2
+2x2+1
x
2
2003
x
2
2002
+2x2002+1.

于是x20032=x02+2(x0+x1+x2+x2002)+2003,
又∵x0=0,
∴2(x1+x2+x2003)=x20032+2x2003-2003=(x2003+1)2-2004,
即|x1+x2+x3+…+x2002+x2003|=
1
2
|(x2003+1)2-2004|.

(2)由于x1+x2+x3+…+x2002+x2003为整数,则x2003+1是偶数,
比较|442-2004|与|462-2004|的大小,可得:
|x1+x2+x3+…+x2002+x2003|≥
1
2
|442-2004|=34.
当x0=x2=x4=x1960=0,x1=x3=x5=x1959=-1,x1961=1,x1962=2,x1963=3,x2003=43时,等号成立.
所以|x1+x2+x3+…+x2002+x2003|的最小值为34.