早教吧 育儿知识 作业答案 考试题库 百科 知识分享

若∫f(x)d(x)=-cosx+c,则f^(n)(x)=?谢谢(貌似是求高阶导数的样子.)

题目详情
若∫f(x)d(x)=-cosx+c,则f^(n)(x)=?
谢谢(貌似是求高阶导数的样子.)
▼优质解答
答案和解析
因为∫f(x)d(x)=-cosx+c,那么我们将这个式子两边分别求导,得到
f(x)=sinx
f^(1)(x)=cosx
f^(2)(x)=-sinx
f^(3)(x)=-cosx
f^(4)(x)=sinx
.
所以
f^(4n)=sinx
f^(4n+1)=cosx
f^(4n+2)=-sinx
f^(4n+3)=-cosx
(其中,上面的n都是正整数)