早教吧 育儿知识 作业答案 考试题库 百科 知识分享

数列{an}满足a1=1,且对于任意的n∈N*都有an+1=an+a1+n,则1a1+1a2+…+1a2017等于()A.20162017B.40322017C.20172018D.40342018

题目详情

数列{an}满足a1=1,且对于任意的n∈N*都有an+1=an+a1+n,则

1
a1
+
1
a2
+…+
1
a2017
等于(  )

A.

2016
2017

B.

4032
2017

C.

2017
2018

D.

4034
2018

▼优质解答
答案和解析
∵数列{an}满足a1=1,且对于任意的n∈N*都有an+1=an+a1+n,
∴an+1-an=1+n,
∴an=a1+(a2-a1)+(a3-a2)+…+(an-an-1
=1+2+3+…+n
=
n(n+1)
2

1
an
=
2
n(n+1)
=2(
1
n
-
1
n+1
).
1
a1
+
1
a2
+…+
1
a2017
=2[(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
2017
-
1
2018
)]
=2×(1-
1
2018
)
=
2017
1009
=
4034
2018

故选:D.