早教吧作业答案频道 -->其他-->
已知函数f(x)=xlnx+ax(a∈R)(I)当a=0,求f(x)的最小值;(II)若函数f(x)在区间[e2,+∞)上为增函数,求a的取值范围;(III)当a>0,b>0,求证f(a)+f(b)≥f(a+b)-(a+b)ln2.
题目详情
已知函数f(x)=xlnx+ax(a∈R)
(I)当a=0,求f(x)的最小值;
(II)若函数f(x)在区间[e2,+∞)上为增函数,求a的取值范围;
(III)当a>0,b>0,求证f(a)+f(b)≥f(a+b)-(a+b)ln2.
(I)当a=0,求f(x)的最小值;
(II)若函数f(x)在区间[e2,+∞)上为增函数,求a的取值范围;
(III)当a>0,b>0,求证f(a)+f(b)≥f(a+b)-(a+b)ln2.
▼优质解答
答案和解析
(I)f(x)的定义域为(0,+∞),f′(x)=lnx+1,令f′(x)=0,得:x=
,
当x∈(0,+∞)时,f'(x),f(x)的变化的情况如下:
∴由表格可知:函数f(x)在区间(0,+∞)上有唯一的极小值,因此也是最小值.
即f(x)在(0,+∞)最小值是f(
)=−
.
(II) 由题意得:f'(x)=lnx+a+1,
∵函数f(x)在区间[e2,+∞)上为增函数,∴当x∈[e2,+∞)时f'(x)≥0,即lnx+a+1≥0在[e2,+∞)上恒成立,∴a≥-1-lnx,
又当x∈[e2,+∞)时,lnx∈[2,+∞),∴-1-lnx∈(-∞,-3],
∴a≥-3.
(III)原不等式可化为:f(a)+f[(a+b)-a]≥f(a+b)-(a+b)ln2,
设函数g(x)=f(x)+f(k-x)(k>0).
则g(x)=xlnx+(k-x)ln(k-x)(0<x<k),
g′(x)=lnx+1−ln(k−x)−1=ln
,
令g′(x)>0,则ln
>0,∴
>1,∴
>0,解得
<x<k.
令g′(x)<0,解得:0<x<
,
∴函数g(x)在(0,
)上单调递减,在(
,k)上单调递增,
∴g(x)在(0,k)上的最小值为g(
),
∴当x∈(0,k)时,总有g(x)≥g(
),
即f(x)+f(k-x)≥f(
)+f(k−
)=2f(
)=kln
=klnk-kln2=f(k)-kln2
令x=a,k-x=b,则有:f(a)+f(b)≥f(a+b)-(a+b)ln2.
1 |
e |
当x∈(0,+∞)时,f'(x),f(x)的变化的情况如下:
x | (0,
|
| (
| ||||||
f'(x) | - | 0 | + | ||||||
f(x) | 单调递减 | 极小值 | 单调递增 |
即f(x)在(0,+∞)最小值是f(
1 |
e |
1 |
e |
(II) 由题意得:f'(x)=lnx+a+1,
∵函数f(x)在区间[e2,+∞)上为增函数,∴当x∈[e2,+∞)时f'(x)≥0,即lnx+a+1≥0在[e2,+∞)上恒成立,∴a≥-1-lnx,
又当x∈[e2,+∞)时,lnx∈[2,+∞),∴-1-lnx∈(-∞,-3],
∴a≥-3.
(III)原不等式可化为:f(a)+f[(a+b)-a]≥f(a+b)-(a+b)ln2,
设函数g(x)=f(x)+f(k-x)(k>0).
则g(x)=xlnx+(k-x)ln(k-x)(0<x<k),
g′(x)=lnx+1−ln(k−x)−1=ln
x |
k−x |
令g′(x)>0,则ln
x |
k−x |
x |
k−x |
2x−k |
k−x |
k |
2 |
令g′(x)<0,解得:0<x<
k |
2 |
∴函数g(x)在(0,
k |
2 |
k |
2 |
∴g(x)在(0,k)上的最小值为g(
k |
2 |
∴当x∈(0,k)时,总有g(x)≥g(
k |
2 |
即f(x)+f(k-x)≥f(
k |
2 |
k |
2 |
k |
2 |
k |
2 |
令x=a,k-x=b,则有:f(a)+f(b)≥f(a+b)-(a+b)ln2.
看了已知函数f(x)=xlnx+a...的网友还看了以下:
1、已知函数f(x)=ax2+2ax+4(a>0),若x1<x2,x1+x2=0,则()a.f(x 2020-04-25 …
已知函数f(x)=x2/1+x2(1)求f(2)+f(1/2),f(3)+f(1/3)的值(2)求 2020-05-12 …
,;定义在正整数集f(x)对任意m,n,都有f(m+n)=f(m)+f(n)+4(m+n)-2,且 2020-05-13 …
1、已知,映射A={1,2,3},B={4,5,6},f:A→B满足1是4的一个原象,这样的映射共 2020-05-23 …
f(x)是定义在R上的函数,且对任意实数x,y都有f(x+y)=f(x)+f(y)-1成立,当f( 2020-06-02 …
设在区间[0,1]上f''(x)>0,则f'(0)f'(1)和f(1)-f(0)的大小顺序是设在区 2020-06-08 …
已知函数F(X)在R上可导,其导函数为F(X),若F(X)满足:(x-1)[f'(x)-F(X)] 2020-06-12 …
已知:0°C时等于32°F,100°C时等于212°F.求20°C时等于多少°F,90°F等于多少 2020-06-12 …
已知函数fx满足:对任意x,y∈R,都有f(x+y)=f(x)f(y)-f(x)-f(y)+2成立 2020-06-12 …
已知定义域为R的函数f(x)满足f(f(x)-x2+x)=f(x)-x2+x.(I)若f(2)=3 2020-06-16 …