早教吧作业答案频道 -->数学-->
求解常微分方程(1-x)y''+xy'-y=0,
题目详情
求解常微分方程
(1-x)y''+xy'-y=0,
(1-x)y''+xy'-y=0,
▼优质解答
答案和解析
(1-x)y''+xy'-y=0
(xy'-y)'=xy''
y''=(1/x) (xy'-y)'
[(1-x)/x](xy'-y)'+(xy'-y)=0
d(xy'-y)/(xy'-y)=xdx/(x-1)
ln|xy'-y|=x+ln|x-1|+lnC
(xy'-y)=C(x-1)e^x
xy'-y=C*(x-1)*e^x
xdy-ydx=C(x-1)e^xdx
d(y/x)=C(x-1)e^xdx/(x^2)
y/x=Ce^x/x +C1
y=Ce^x+C1x
∫(x-1)e^xdx/x^2=∫e^xdx/x-∫e^xdx/x^2
=∫de^x/x+∫e^xd(1/x)
=∫d(e^x/x)=(1/x)e^x+C1
(xy'-y)'=xy''
y''=(1/x) (xy'-y)'
[(1-x)/x](xy'-y)'+(xy'-y)=0
d(xy'-y)/(xy'-y)=xdx/(x-1)
ln|xy'-y|=x+ln|x-1|+lnC
(xy'-y)=C(x-1)e^x
xy'-y=C*(x-1)*e^x
xdy-ydx=C(x-1)e^xdx
d(y/x)=C(x-1)e^xdx/(x^2)
y/x=Ce^x/x +C1
y=Ce^x+C1x
∫(x-1)e^xdx/x^2=∫e^xdx/x-∫e^xdx/x^2
=∫de^x/x+∫e^xd(1/x)
=∫d(e^x/x)=(1/x)e^x+C1
看了求解常微分方程(1-x)y''...的网友还看了以下:
用拉氏变换法解常微分方程y''-2y'+y=-2cost,y(0)=0,y'(0)=1 2020-04-25 …
在二阶的常系数非齐次线性微分方程y""+py"+qy=f(x)中,记特征方程为λ^2+pλ+... 2020-05-13 …
求助过路的matlab大神,老师留作业:用两种欧拉方法解常微分方程方程是 20y"+y'+0.5y 2020-05-16 …
关于“一阶线性微分方程”概念理解的两个问题1、为何把形如y'+P(x)y=0和y'+P(x)y=Q 2020-05-16 …
高数---由通解求特解设y1(x)是方程y'+p(x)y=0的特解,y2(x)是方程y'+p(x) 2020-06-02 …
求常微分方程y'=2x+1满足条件y(0)=2的特解用matlab求常微分方程y'=2x+1满足条 2020-06-12 …
若二阶常系数线性齐次微分方程y″+ay′+by=0的通解为y=(C1+C2x)ex,则非齐次方程y 2020-07-20 …
求微分方程的通解y"+y=cosx想问下具体的.)∵齐次方程y"+y=0的特征方程是r²+1=0, 2020-07-31 …
微分方程问题用降阶法求下列微分方程满足所给初值条件的特解(1)yy'-(y')^2=y^4,y(0 2020-07-31 …
matlab求解常微分方程y''-0.01(y')^2+2y=sint,y(0)=0,y'(0)=1 2020-12-12 …