早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知z∈C,z+2i和z2-i都是实数.(1)求复数z;(2)若复数(z+ai)2在复平面上对应的点在第四象限,求实数a的取值范围.

题目详情
已知z∈C,z+2i 和
z
2-i
都是实数.
(1)求复数z;
(2)若复数(z+ai) 2 在复平面上对应的点在第四象限,求实数a 的取值范围.
▼优质解答
答案和解析
(1)设z=a+bi(a,b∈R),则z+2i=a+(b+2)i,
z
2-i
=
a+bi
2-i
=
(a+bi)(2+i)
(2-i)(2+i)
=
2a-b
5
+
a+2b
5
i ,
∵z+2i 和
z
2-i
 都是实数,∴
b+2=0
a+2b
5
=0
,解得
a=4
b=-2
,∴z=4-2i.
(2)由(1)知z=4-2i,∴(z+ai) 2 =[4+(a-2)i] 2 =16-(a-2) 2 +8(a-2)i,
∵(z+ai) 2  在复平面上对应的点在第四象限,∴
16- (a-2) 2 >0
8(a-2)<0

a 2 -4a-12<0
a<2
,∴
-2<a<6
a<2
,∴-2<a<2,即实数a 的取值范围是(-2,2).