早教吧 育儿知识 作业答案 考试题库 百科 知识分享

函数f(x,y,z)=x2+2y2+3z2+xy+yz+4x在点(0,1,-2)处的梯度是5i+2j−11k5i+2j−11k.

题目详情
函数f(x,y,z)=x2+2y2+3z2+xy+yz+4x在点(0,1,-2)处的梯度是
5
i
+2
j
−11
k
5
i
+2
j
−11
k
▼优质解答
答案和解析
由于f(x,y,z)=x2+2y2+3z2+xy+yz+4x在点(0,1,-2)处的三个一阶偏导数为
fx(0,1,-2)=(2x+y+4)|(0,1,-2)=5,fy(0,1,-2)=(4y+x+z+4)|(0,1,-2)=2,fz(0,1,-2)=(6z+y)|(0,1,-2)=-11
∴在点(0,1,-2)处的梯度是5
i
+2
j
−11
k