早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知函数f(x)=1-|2x-1|,x∈[0,1].定义:f1(x)=f(x),f2(x)=f(f1(x)),…,fn(x)=f(fn-1(x)),n=2,3,4,…满足fn(x)=x的点x∈[0,1]称为f(x)的n阶不动点.则f(x)的n阶不动

题目详情
已知函数f(x)=1-|2x-1|,x∈[0,1].定义:f1(x)=f(x),f2(x)=f(f1(x)),…,fn(x)=f(fn-1(x)),n=2,3,4,…满足fn(x)=x的点x∈[0,1]称为f(x)的n阶不动点.则f(x)的n阶不动点的个数是(  )

A.2n个
B.2n2
C.2(2n-1)个
D.2n
▼优质解答
答案和解析
函数f(x)=1-|2x-1|=
2x,0≤x≤
1
2
2-2x,
1
2
<x≤1

当x∈[0,
1
2
]时,f1(x)=2x=x,解得x=0,
当x∈(
1
2
,1]时,f1(x)=2-2x=x,解得x=
2
3

∴f的1阶周期点的个数为2
当x∈[0,
1
4
]时,f1(x)=2x,f2(x)=4x=x,解得x=0
当x∈(
1
4
1
2
]时,f1(x)=2x,f2(x)=2-4x=x,解得x=
2
5

当x∈(
1
2
3
4
]时,f1(x)=2-2x,f2(x)=4x-2=x,解得x=
2
3

当x∈(
3
4
,1]时,f1(x)=2-2x,f2(x)=4-4x=x,解得x=
4
5

∴f的2阶周期点的个数为22
依此类推:
∴f的n阶周期点的个数为2n