早教吧作业答案频道 -->数学-->
(x+1)y"+y'=ln(x通解+1)
题目详情
(x+1)y"+y'=ln(x通解+1)
▼优质解答
答案和解析
令 z = y' 则 z' = y''
So (x + 1)y'' + y' = ln(x + 1)
--> (x + 1)z' + z = ln(x + 1)
--> (x + 1)z' + z(x + 1) = ln(x + 1)
--> [z(x + 1)]' = ln(x + 1)
--> z(x + 1) = ∫ ln(x + 1) dx
--> z(x + 1) = xln(x + 1) - ∫ (x + 1 - 1)/(x + 1) dx
--> z(x + 1) = xln(x + 1) - ∫ [1 - 1/(x + 1)] dx
--> z(x + 1) = xln(x + 1) - x + ln|x + 1| + C
--> z(x + 1) = - x + (x + 1)ln|x + 1| + C
--> z = (C - x)/(x + 1) + ln|x + 1|
--> y' = (C - x)/(x + 1) + ln|x + 1|
--> y' = C1*ln|x + 1| - 2x + xln|x + 1| + C2
So (x + 1)y'' + y' = ln(x + 1)
--> (x + 1)z' + z = ln(x + 1)
--> (x + 1)z' + z(x + 1) = ln(x + 1)
--> [z(x + 1)]' = ln(x + 1)
--> z(x + 1) = ∫ ln(x + 1) dx
--> z(x + 1) = xln(x + 1) - ∫ (x + 1 - 1)/(x + 1) dx
--> z(x + 1) = xln(x + 1) - ∫ [1 - 1/(x + 1)] dx
--> z(x + 1) = xln(x + 1) - x + ln|x + 1| + C
--> z(x + 1) = - x + (x + 1)ln|x + 1| + C
--> z = (C - x)/(x + 1) + ln|x + 1|
--> y' = (C - x)/(x + 1) + ln|x + 1|
--> y' = C1*ln|x + 1| - 2x + xln|x + 1| + C2
看了(x+1)y"+y'=ln(x...的网友还看了以下:
比较∫∫ln(x+y)dxdy和∫∫[ln(x+y)]^2dxdy哪个大?D的区域是长方形3 2020-04-25 …
求z=根号下ln(x*y)的一阶导数(在线等)求z=根号下ln(x*y)的一阶导数 2020-05-12 …
求微分方程 (dy)/(dx)+(y/x)=(a ln x)y^2 的通解 求解答,急! 2020-05-17 …
利用恰当的变换解方程dy/dx=(x+y)ln(x+y)-1 2020-05-20 …
区域D为x=0,y=0,x+y=1/4,x+y=1,比较大小I1=∫[ln(x+y)]^3dxdy 2020-07-31 …
二重积分设平面区域D是由x=0,y=0,x+y=1/2,x+y=1围成,若I1=∫∫[ln(x+y 2020-07-31 …
已知n条直线,L1:x-y+C1=0,C1=根号2,L2:x-y+C2=0,L3:x-y+C3=0, 2020-10-31 …
高数题求高手!设f(x)=ln{x-(x^2-x^2)^(1/2)},其中x>y>0,则f(x+y, 2020-11-01 …
已知ln(x+y)=x^3*y^2+ln(x^2+2)-4求在(1,2)时的切线方程好像是要先求dy 2021-02-07 …
1.设y=y(x)由方程e的xy次方+y的三次方-5x=0所确定,求导数2.设隐函数y=y(x由方程 2021-02-16 …