早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,四边形ABCD是⊙O的内接四边形,且AC⊥BD,OF⊥AB,垂足分别为E、F,请问OF与CD有怎样的数量关系?

题目详情
如图,四边形ABCD是⊙O的内接四边形,且AC⊥BD,OF⊥AB,垂足分别为E、F,请问OF与CD有怎样的数量关系?
▼优质解答
答案和解析
OF=
1
2
CD.
理由如下:如图,连接AO并延长,与⊙O相交于点G,连接BG,
则∠G=∠ADB,
∵AC⊥BD,
∴∠DAE+∠ADB=90°,
∵AG是直径,
∴∠BAG+∠G=90°,
∴∠DAE=∠BAG,
∴CD=BG,
∵OF⊥AB,
∴AF=BF,
∴OF是△ABG的中位线,
∴OF=
1
2
BG,
故OF=
1
2
CD.