早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出

题目详情
如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.
作业帮
(1)出发2秒后,求PQ的长;
(2)从出发几秒钟后,△PQB第一次能形成等腰三角形?
(3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.
▼优质解答
答案和解析
作业帮 (1)BQ=2×2=4cm,
BP=AB-AP=8-2×1=6cm,
∵∠B=90°,
PQ=
BQ2+BP2
=
42+62
=
52
=2
13

(2)BQ=2t,
BP=8-t …1′
2t=8-t,
解得:t=
8
3
…2′;
(3)①当CQ=BQ时(图1),则∠C=∠CBQ,
∵∠ABC=90°,
∴∠CBQ+∠ABQ=90°,
∠A+∠C=90°,
∴∠A=∠ABQ,
∴BQ=AQ,
∴CQ=AQ=5,
∴BC+CQ=11,
∴t=11÷2=5.5秒.…1′
②当CQ=BC时(如图2),则BC+CQ=12
∴t=12÷2=6秒.…1′
③当BC=BQ时(如图3),过B点作BE⊥AC于点E,
则BE=
AB•BC
AC
=
6×8
10
=
24
5

所以CE=
BC2-BE2
=
62-(
24
5
)2
=
18
5

故CQ=2CE=7.2,
所以BC+CQ=13.2,
∴t=13.2÷2=6.6秒.…2′
由上可知,当t为5.5秒或6秒或6.6秒时,
△BCQ为等腰三角形.