早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知a,b,c分别为△ABC的三个内角A,B,C的对边,a=2且(2+b)(sinA-sinB)=(c-b)sinC(1)求角A的大小;(2)求△ABC的面积的最大值.

题目详情
已知a,b,c分别为△ABC的三个内角A,B,C的对边,a=2且(2+b)(sinA-sinB)=(c-b)sinC
(1)求角A的大小;
(2)求△ABC的面积的最大值.
▼优质解答
答案和解析
(1)△ABC中,∵a=2,且(2+b)(sinA-sinB)=(c-b)sinC,
∴利用正弦定理可得(2+b)(a-b)=(c-b)c,即 b2+c2-bc=4,即b2+c2-4=bc,
∴cosA=
b2+c2-a2
2bc
=
bc
2bc
=
1
2

∴A=
π
3

(2)再由b2+c2-bc=4,利用基本不等式可得 4≥2bc-bc=bc,
∴bc≤4,当且仅当b=c=2时,取等号,
此时,△ABC为等边三角形,它的面积为
1
2
bcsinA=
1
2
×2×2×
3
2
=
3

故△ABC的面积的最大值为:
3