早教吧 育儿知识 作业答案 考试题库 百科 知识分享

在直三棱柱ABC-A1B1C1中,AB1⊥BC1,AB=CC1=a,BC=b.(1)设E、F分别为AB1、BC1的中点,求证:EF∥平面ABC;(2)求证:A1C1⊥AB;(3)求点B1到平面ABC1的距离.

题目详情
在直三棱柱ABC-A1B1C1中,AB1⊥BC1,AB=CC1=a,BC=b.
(1)设E、F分别为AB1、BC1的中点,求证:EF∥平面ABC;
(2)求证:A1C1⊥AB;
(3)求点B1到平面ABC1的距离.
▼优质解答
答案和解析
(1)证明:∵E、F分别为AB1、BC1的中点,
∴EF∥A1C1.∵A1C1∥AC,∴EF∥AC.
∴EF∥平面ABC.
(2)证明:∵AB=CC1,∴AB=BB1.又三棱柱为直三棱柱,∴四边形ABB1A1为正方形.连接A1B,则A1B⊥AB1
又∵AB1⊥BC1,∴AB1⊥平面A1BC1
∴AB1⊥A1C1
又A1C1⊥AA1,∴A1C1⊥平面A1ABB1
∴A1C1⊥AB.
(3)∵A1B1∥AB,∴A1B1∥平面ABC1
∴A1到平面ABC1的距离等于B1到平面ABC1的距离.
过A1作A1G⊥AC1于点G,
∵AB⊥平面ACC1A1
∴AB⊥A1G.从而A1G⊥平面ABC1,故A1G即为所求的距离,即A1G=
a
b
b2−a2

∴点B1到平面ABC1的距离
a
b
b2−a2