早教吧作业答案频道 -->英语-->
单词填空超容易(可惜我不会OneinterestingthingIfoundwasthattheAmericanclassesaredifferentfromourclassesherebecausetheyareveryfree.Youcansitanywhereyoulikeintheclassroom.Andyouarewelcometo()yourideaswith
题目详情
单词填空 超容易(可惜我不会
One interesting thing I found was that the American classes are different from our classes here because they are very free.You can sit anywhere you like in the classroom.And you are welcome to ( ) your ideas with the class.I really liked this kind of class.
One interesting thing I found was that the American classes are different from our classes here because they are very free.You can sit anywhere you like in the classroom.And you are welcome to ( ) your ideas with the class.I really liked this kind of class.
▼优质解答
答案和解析
share 分享,肯定对.
看了单词填空超容易(可惜我不会On...的网友还看了以下:
设A是n阶矩阵(n≥2),试证 R(A*)=n若R(A)=n,=1若R(A)=n-1 =0若R(设 2020-04-05 …
关于质点的匀速圆周运动,下列说法正确的是()A.由a=可知,a与r成反比B.由a=ω2r可知,a与 2020-04-12 …
不等式设a,b,c,d,m,n∈R+,且a/b<c/d求证:a/b<ma+nc/mb+nd<c/d 2020-05-23 …
齐次方程组有l个线性无关的解向量,为什么l<n-r(A)?应该是等于啊 2020-06-03 …
三个线性代数问题(1):矩阵相似和等价有什么区别?若A和B相似,A和kB相似吗?(2):Aα=kα 2020-06-06 …
矩阵的秩设A是4阶矩阵,若a1=1,9,9,9^Ta2=[2,0,0,0]^Ta3=[2,0,0, 2020-06-08 …
r(A*A^T)=r(A^T*A)=r(A)证明方程AX=0与A^TAX=0同解AX=0显然有A^ 2020-06-10 …
老师,这个Ax=0,有n-r(A)个线性无关解向量到底怎么理解啊?基础解系就是极大线性无关组.向量 2020-06-14 …
向量组的的极大线性无关组所含有的向量的个数,称为向量组的秩...基础解系,是解向量组的一个极大无关 2020-06-30 …
a=(m,n),b=(cosx,sinx),其中m,n∈R,若|a|=4|b|,则当ab 2020-07-18 …