早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,已知ΔABD是等腰直角三角形,∠D=90°,BD=.现将ΔABD沿斜边的中线DC折起,使二面角A-DC-B为直二面角,E是线段AD的中点,F是线段AC上的一个动点(不包括A).(1)确定F的位置,使得平面ABD⊥

题目详情
如图,已知ΔABD是等腰直角三角形,∠D=90°,BD=.现将ΔABD沿斜边的中线DC折起,使二面角A-DC-B为直二面角,E是线段AD的中点,F是线段AC上的一个动点(不包括A).
(1)确定F的位置,使得平面ABD⊥平面BEF;
(2)当直线BD与直线EF所成的角为60°时,求证:平面ABD⊥平面BEF.

____
▼优质解答
答案和解析
【分析】(1)以C为原点,分别以CB、CD、CA为x,y,z的正半轴建立空间直角坐标系,根据=0,可知AD⊥BE,根据面ABD与面BEF垂直的性质定理可知AD⊥面BEF,则AD⊥EF,即,即可得到F点与C点重合时满足条件;
(2)根据=求出z,由F是线段AC上(不包括A、C)的点得z=0,从而F点与C点重合,则AD⊥EF,从而得到结论.
证明:(1)由已知二面角A-DC-B为直二面角,又AC⊥CD,
∴AC⊥面BCD
在RtΔACD中,CD=1,∠ADC=45°,
∴AC=1.
以C为原点,分别以CB、CD、CA为x,y,z的正半轴建立空间直角坐标系,
则B(1,0,0),D(0,1,0),A(0,0,1).
∵E为AD中点,
∴E(0,),

∴AD⊥BE.
若面ABD⊥面BEF,则AD⊥面BEF,则AD⊥EF,即
设F(0,0,z),则(0,1,-1)•(0,-,z-)=0,
∴(-)•1+(-1)•(z-)=0⇒z=0,
∴F点坐标为(0,0,0),即F点与C点重合时,平面ABD⊥平面BEF.
(2)由(1)知
=解得z=0或z=1,
由F是线段AC上(不包括A、C)的点得z=0
∴F点坐标为(0,0,0),即F点与C点重合,
∴AD⊥EF,
又BC⊥AD
∴平面ABD⊥平面BEF
【点评】本题主要考查了平面与平面垂直的判定,平面与平面垂直的性质,考查空间想象能力和思维能力,应用向量知识解决立体几何问题的能力.
看了如图,已知ΔABD是等腰直角三...的网友还看了以下: