早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图1,在等边△ABC中,点D是边AC的中点,点P是线段DC上的动点(点P与点C不重合),连接BP.将△ABP绕点P按顺时针方向旋转α角(0°<α<180°),得到△A1B1P,连接AA1,射线AA1分别交射线PB、

题目详情
如图1,在等边△ABC中,点D是边AC的中点,点P是线段DC上的动点(点P与点C不重合),连接BP.将△ABP绕点P按顺时针方向旋转α角(0°<α<180°),得到△A1B1P,连接AA1,射线AA1分别交射线PB、射线B1B于点E、F.
(1)如图1,当0°<α<60°时,在α角变化过程中,△BEF与△AEP始终存在______关系(填“相似”或“全等”),并说明理由;
(2)如图2,设∠ABP=β.当60°<α<180°时,在α角变化过程中,是否存在△BEF与△AEP全等?若存在,求出α与β之间的数量关系;若不存在,请说明理由;
(3)如图3,当α=60°时,点E、F与点B重合.已知AB=4,设DP=x,△A1BB1的面积为S,求S关于x的函数关系式.
▼优质解答
答案和解析
(1)相似(1分)
由题意得:∠APA1=∠BPB1=α,AP=A1P,BP=B1P,
则∠PAA1=∠PBB1=
180°−α
2
=90°−
α
2
,(2分)
∵∠PBB1=∠EBF,
∴∠PAE=∠EBF,
又∵∠BEF=∠AEP,∠EBF=∠EAP,
∴△BEF∽△AEP;(3分)

(2)存在,理由如下:(4分)
∵∠PAE=∠EBF,∠AEP=∠BEF,
∴△BEF∽△AEP,
若要使得△BEF≌△AEP,只需要满足BE=AE即可,(5分)
∴∠BAE=∠ABE,
∵∠BAC=60°,
∴∠BAE=60°−(90°−
α
2
)=
α
2
−30°,
∵∠ABE=β,∠BAE=∠ABE,(6分)
α
2
−30°=β,
即α=2β+60°;(7分)

(3)连接BD,交A1B1于点G,
过点A1作A1H⊥AC于点H.
∵∠B1A1P=∠A1PA=60°,
∴A1B1∥AC,
由题意得:AP=A1P=2+x,∠A=60°,
∴△PAA1是等边三角形,
∴A1H=sin60°A1P=
3
2
(2+x),(8分)
在Rt△ABD中,BD=2
3

∴BG=2
3
3
2
(2+x)=
3
3
2
x,(9分)
S△A1BB1=
1
2
×4×(
3
3
2
x)=2
3
3
x(0≤x<2).(10分)