早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,已知直平行六面体ABCD-A1B1C1D1中,AD⊥BD,AD=BD=a,E是CC1的中点,A1D⊥BE.(Ⅰ)求证:A1D⊥平面BDE;(Ⅱ)求二面角B-DE-C的大小;(Ⅲ)求点B到平面A1DE的距离.

题目详情
如图,已知直平行六面体ABCD-A1B1C1D1中,AD⊥BD,AD=BD=a,E是CC1的中点,A1D⊥BE.
(Ⅰ)求证:A1D⊥平面BDE;
(Ⅱ)求二面角B-DE-C的大小;
(Ⅲ)求点B到平面A1DE的距离.
▼优质解答
答案和解析
(Ⅰ)证明:∵直平行六面体ABCD-A1B1C1D1中,AA1⊥面ABCD
又∵AD⊥BD,∴A1D⊥BD.…(2分)
又A1D⊥BE,∴A1D⊥平面BDE.…(3分)
(Ⅱ)连B1C.∵A1B1∥CD,∴B1C∥A1D.∵A1D⊥BE,∴B1C⊥BE,
∴∠BB1C=∠CBE,∴Rt△BB1C∽Rt△CBE,
BC
BB1
CE
BC
.∵CE=
1
2
BB1,BC=AD=a,∴
1
2
B
B
2
1
=BC2=a2,∴BB1=
2
a.…(5分)
取CD中点M,连BM.∵CD=
2
a,∴BM=
2
2
a.
过M作MN⊥DE于N,连BN.∵平面CD1⊥平面BD,BM⊥CD,∴BM⊥平面CD1
∴BN⊥DE,∴∠BNM就是二面角B-DE-C的平面角.…(7分)∵sin∠MDN=
MN
DM
CE
DE
,DE=
CE2+CD2
(
作业帮用户 2017-09-26 举报
问题解析
(Ⅰ)由直平行六面体ABCD-A1B1C1D1,可知AA1⊥面ABCD,根据A1D⊥BD,A1D⊥BE,可证A1D⊥平面BDE.
(Ⅱ)过M作MN⊥DE于N,连BN.易证BNM就是二面角B-DE-C的平面角,在Rt△BMN中,可求二面角B-DE-C的大小;
(Ⅲ)易证BN⊥平面A1DE,从而BN的长就是点B到平面A1DE的距离,故可求点B到平面A1DE的距离.
名师点评
本题考点:
二面角的平面角及求法;直线与平面垂直的判定;点、线、面间的距离计算.
考点点评:
本题以直平行六面体为载体,考查线面垂直,考查面面角,考查点面距离,关键是利用线面垂直的判定定理,正确表示面面角,线面距离的线段.
我是二维码 扫描下载二维码