早教吧作业答案频道 -->数学-->
函数f(x)=2lnx - x² - kx(k∈R),若函数f(x)存在两个零点m,n(0<m<n),且2x0=m+n.问:函数f(x)在点(x0,f(x0))处的切线能否平行于x轴?若能,求出该切线方程;若不能,说明理由.
题目详情
函数f(x)=2lnx - x² - kx(k∈R),若函数f(x)存在两个零点m,n(0<m<n),且2x0=m+n.问:函数f(x)在点(x0,f(x0))处的切线能否平行于x轴?若能,求出该切线方程;若不能,说明理由.
▼优质解答
答案和解析
假设:函数f(x)在点(x0,f(x0))处的切线平行于x轴
根据题意得:
2lnm-m²-km=0 ①
2lnn-n²-kn=0 ②
m+n=2x0 ③
2/x0-2x0-k=0 ④
①-②得:ln(m/n)-(m+n)(m-n)=k(m-n)
∴k=[2ln(m/n)]/(m-n)-2x0
由④变式得:k=2/x0-2x0
∴ln(m/n)=2(m-n)/(m+n)=2(m/n-1)/(m/n+1) ⑤
设:u=m/n∈(0,1)
由⑤变式得:lnu-2(u-1)/(u+1)=0 u∈(0,1)
设:g(u)=lnu-2(u-1)/(u+1) u∈(0,1)
求导得:
g'(u)=1/u-[2(u+1)-2(u-1)]/(u+1)²
=[(u+1)²-4u]/u(u+1)²
=(u-1)²/u(u+1)²>0
∴函数g(u)=lnu-2(u-1)/(u+1)在(0,1)上单调递增
∴g(u)<g(1)=0
即:lnu-2(u-1)/(u+1)<0
即:ln(m/n)<2(m/n-1)/(m/n+1),与⑤矛盾
故:函数f(x)在点(x0,f(x0))处的切线不能平行于x轴
希望我的回答对你有帮助,采纳吧O(∩_∩)O!
根据题意得:
2lnm-m²-km=0 ①
2lnn-n²-kn=0 ②
m+n=2x0 ③
2/x0-2x0-k=0 ④
①-②得:ln(m/n)-(m+n)(m-n)=k(m-n)
∴k=[2ln(m/n)]/(m-n)-2x0
由④变式得:k=2/x0-2x0
∴ln(m/n)=2(m-n)/(m+n)=2(m/n-1)/(m/n+1) ⑤
设:u=m/n∈(0,1)
由⑤变式得:lnu-2(u-1)/(u+1)=0 u∈(0,1)
设:g(u)=lnu-2(u-1)/(u+1) u∈(0,1)
求导得:
g'(u)=1/u-[2(u+1)-2(u-1)]/(u+1)²
=[(u+1)²-4u]/u(u+1)²
=(u-1)²/u(u+1)²>0
∴函数g(u)=lnu-2(u-1)/(u+1)在(0,1)上单调递增
∴g(u)<g(1)=0
即:lnu-2(u-1)/(u+1)<0
即:ln(m/n)<2(m/n-1)/(m/n+1),与⑤矛盾
故:函数f(x)在点(x0,f(x0))处的切线不能平行于x轴
希望我的回答对你有帮助,采纳吧O(∩_∩)O!
看了 函数f(x)=2lnx - ...的网友还看了以下:
已知函数∮=ax2+bx+1(a>0,b∈R)设方程有两个实数根X1,X2.(1)如果x1<2<x 2020-05-13 …
根据以下函数关系,对输入的不同的x值,计算出相应的y值.0x<0y=x0≤x<101010≤x<2 2020-06-03 …
根据以下的函数关系,输入X,计算并输出Y的值0x<0y=x0≤x<101010≤x<20-0.5x 2020-06-03 …
高数导数题设f(x)在x0处可导,且x0处导数>0,则存在δ>0,使得a、f(x)在区间﹙x0﹣δ 2020-06-10 …
已知函数f(x)=2^x-log1/2x且实数a>b>c>0满足f(a)·f(b)·f(c)<0, 2020-07-09 …
极值的第三充分条件极值第二充分条件;若x0是f(x)的驻点(即f′(x0)=0),且f″(x0)存 2020-07-11 …
设二次函数f(x)=ax2+bx+c(a>0),方程f(x)-x=0的两个根x1,x2满足0<x1 2020-07-12 …
十万火急,已知函数fx=(x-a)/axa>01.若存在x0,使fx0=x0,则称x0为函数fx的 2020-07-14 …
一道极限与导数命题:设f(x)在x=x0的某邻域可导,且f'(x0)=A,则lim(x趋近于x0) 2020-07-21 …
则直线x0*x/2+y0y=1与椭圆C的公共点个数为几个?请详解已知椭圆C:x*2/2+y*2=1 2020-07-31 …