早教吧作业答案频道 -->数学-->
若x,y,z均为正实数,且x^2+y^2+z^2=1,则S=(z+1)^2/2xyz的最小值是
题目详情
若x,y,z均为正实数,且x^2+y^2+z^2=1,则S=(z+1)^2/2xyz的最小值是
▼优质解答
答案和解析
2xy ≤ x^2+y^2 = 1 - z^2,仅当x=y时成立
∴S = (z + 1)^2 / 2xyz
≥ (z + 1)^2 / z(1 - z^2)
= (z + 1) / z(1 - z)
= - 1 / [(z+1) - 3 + 2/(z+1)]
由于(z+1) + 2/(z+1) - 3 ≥ 2√2 - 3,等号当z+1 = 2/(z+1),亦即z = √2-1时成立.
所以 - 1 / [(z+1) - 3 + 2/(z+1)] ≥ 1/(3 - 2√2) = 3 + 2√2,
S的最小值为3 + 2√2,当z = √2-1时成立.
不难求出,此时的x = y = √(√2 - 1).
2xy ≤ x^2+y^2 = 1 - z^2,仅当x=y时成立
∴S = (z + 1)^2 / 2xyz
≥ (z + 1)^2 / z(1 - z^2)
= (z + 1) / z(1 - z)
= - 1 / [(z+1) - 3 + 2/(z+1)]
由于(z+1) + 2/(z+1) - 3 ≥ 2√2 - 3,等号当z+1 = 2/(z+1),亦即z = √2-1时成立.
所以 - 1 / [(z+1) - 3 + 2/(z+1)] ≥ 1/(3 - 2√2) = 3 + 2√2,
S的最小值为3 + 2√2,当z = √2-1时成立.
不难求出,此时的x = y = √(√2 - 1).
看了若x,y,z均为正实数,且x^...的网友还看了以下:
一道有关函数单调性的问题已知f(x)的定义域为实数,且满足两个条件条件1对任意x,y属于实数有f(x 2020-03-30 …
设f(x)=-2^(x)+a/2^(x+1)+b(a,b为实常数)的题设f(x)=-2^(x)+a 2020-05-13 …
已知向量a=(√3sinωx,cosωx),b=(cosωx,-cosωx)函数f(x)=a·b+ 2020-05-23 …
已知a,b为常数,且a≠0,f(x)=ax²+bx,f(2)=0,方程f(x)=x有两个相等实根( 2020-07-16 …
函数f(x)对一切实数x都满足f((1/2)+x)=f((1/2)-x),并且f(x)=0有3个实 2020-07-21 …
1已知x,y,z为实数,且满足:x+2y-z=6,x-y+2z=3求:x^2+y^2+z^2的最小 2020-07-21 …
由大于0的所有自然数组成的集合,是A={x|x>10且为整数}?还是A={X∈N|X>10}?为什 2020-07-31 …
实数x分别取什么值时,复数z=x2-x-6/x+3+(x2-2x-15)i是(1)实数?(2)虚数 2020-08-01 …
若(x-2)+yi和3x-i互为共轭复数,则实数x,y的值是()A.x=3且y=3B.x=5且y= 2020-08-02 …
若(x-2)+yi和3x-i互为共轭复数,则实数x,y的值是()A.x=3且y=3B.x=5且y= 2020-08-02 …