早教吧作业答案频道 -->数学-->
已知数列{an}={2n-1(n为奇)3^n(n为偶),求数列{an}前n项和Sn2n-1(n为奇)3^n(n为偶)是两条式子,n分别是奇数和偶数时,是不同的式子,要求{an}前n项和Sn
题目详情
已知数列{an}={2n-1(n为奇) 3^n(n为偶),求数列{an}前n项和Sn
2n-1(n为奇) 3^n(n为偶)
是两条式子,n分别是奇数和偶数时,是不同的式子,要求{an}前n项和Sn
2n-1(n为奇) 3^n(n为偶)
是两条式子,n分别是奇数和偶数时,是不同的式子,要求{an}前n项和Sn
▼优质解答
答案和解析
2n-1数列的n相邻为2,可视为公差为4的等差数列
重新构造am=4m-3
3^n数列的相邻为2,可视为公比为9等比数列
重新构造am=9^m
当n为奇数可以假设有m+1项是2n-1
有m项是3^n
m+m+1=n
m=(n-1)/2
Sn=(1+4m+1)(m+1)/2+[9^(m+1)-9]/8
Sn=(2m+1)(m+1)+[9^(m+1)-9]/8
m=(n-1)/2代入,得
Sn=n(n+1)/2+{3^[(n+1)/2] -9 }/8
当n为偶数
假设有m项是4m-3
有m项是9^m
m=n/2
Sn=[1+4m-3]m/2+[9^(m+1)-9]/(9-1)
Sn=(2m-1)m+[9^(m+1)-9]/8
把m=n/2代入
得Sn=(n-1)n/2+{3^[(n/2)+2]-9}/8
重新构造am=4m-3
3^n数列的相邻为2,可视为公比为9等比数列
重新构造am=9^m
当n为奇数可以假设有m+1项是2n-1
有m项是3^n
m+m+1=n
m=(n-1)/2
Sn=(1+4m+1)(m+1)/2+[9^(m+1)-9]/8
Sn=(2m+1)(m+1)+[9^(m+1)-9]/8
m=(n-1)/2代入,得
Sn=n(n+1)/2+{3^[(n+1)/2] -9 }/8
当n为偶数
假设有m项是4m-3
有m项是9^m
m=n/2
Sn=[1+4m-3]m/2+[9^(m+1)-9]/(9-1)
Sn=(2m-1)m+[9^(m+1)-9]/8
把m=n/2代入
得Sn=(n-1)n/2+{3^[(n/2)+2]-9}/8
看了已知数列{an}={2n-1(...的网友还看了以下:
已知数列{An}满足An+1=2An+3*2^n,A1=2,用定义法求数列{An}的通项公式一定要 2020-05-16 …
设{an}是等差数列,an=2n-1,{bn}是等比数列,bn=2^(n-1)求{an/bn}前n 2020-05-16 …
an=1/n(n+1).求{an}的前n项和 2020-05-17 …
等比数列{an}中,a1>0且q>1是{an}为递增数列的A,充分非必要条件B.必要非充分条件,C 2020-06-06 …
已知数列{An}满足An+1=1/16(1+4An+√(1+24An)),A1=1,用换元法法求数 2020-06-26 …
1.关于求通项公式的,不太懂累加法和累乘法的,已知数列{A满足An+1=2^n+1*An/An+2 2020-07-15 …
若数列{bn}满足,b1/a1+b2/a2+.+bn/an=1-1/2^n,n∈N+,求{bn}的 2020-07-23 …
2^n-1是素数2^n-1如果是素数的话,2^(n-1)(2^n-1)的全部正约数的和是2^n(2 2020-07-31 …
已知递推公式An=n*A(n-1)+(n-1)!,求An可以写成其他形式吗?不用阶乘,而用关于n的 2020-08-01 …
1.数列{an}的前n项和记为Sn,已知a1=1,an+1(n+1是a的角标)=(n+2)/n×S 2020-08-02 …