早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,长方形ABCD中,AB=67,BC=30.E、F分别是AB、BC边上的两点,BE+BF=49.那么,三角形DEF面积的最小值是.

题目详情
如图,长方形ABCD 中,AB=67,BC=30.E、F分别是AB、BC边上的两点,BE+BF=49.那么,三角形DEF 面积的最小值是______.
▼优质解答
答案和解析
设AE=x,则BE=67-x,BF=49-(67-x)=x-18,CF=30-(x-18)=48-x.
三个直角三角形面积和是
1
2
[30x+(67−x)(x−18)+(48−x)67]=
1
2
[2010+x(48−x)],
当x=24,则三个直角三角形面积和是
1
2
(2010+242)=1293,
则三角形DEF面积是2010-1293=717;
故答案为:717.