早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设fx有二阶连续导数,且f'(0)=0,又f''x/丨x丨在x趋近于0时,极限等于-1则f0是fx极大能得到f''0=0吗?

题目详情
设fx有二阶连续导数,且f'(0)=0,又f''x/丨x丨在x趋近于0时,极限等于-1则f0是fx极大
能得到f''0=0吗?
▼优质解答
答案和解析
根据连续性,可以得到f"(0)=0
过程是f"(0)=limf"(x)=lim|x|*f"(x)/|x|=lim|x|*limf"(x)/|x|=0*(-1)=0
当x>0且趋近于0时,由于f"(x)/|x|=f"(x)/x〈0,所以f"(x)〈0,
从而f'(x)=f'(0)+f"(ξ)=0+f"(ξ)<0,即f在0右侧递减
当x<0且趋近于0时,由于f"(x)/|x|=f"(x)/(-x)〈0,所以f"(x)>0,
从而f'(x)=f'(0)+f"(ξ)=0+f"(ξ)>0,即f在0左侧递增
所以f(0)是f(x)的极大值