早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2014•揭阳模拟)已知等差数列数列{an}的前n项和为Sn,等比数列{bn}的各项均为正数,公比是q,且满足:a1=3,b1=1,b2+S2=12,S2=b2q.(Ⅰ)求an与bn;(Ⅱ)设cn=3bn-λ•2an3(λ∈R),若{cn}满

题目详情
(2014•揭阳模拟)已知等差数列数列{an}的前n项和为Sn,等比数列{bn}的各项均为正数,公比是q,且满足:a1=3,b1=1,b2+S2=12,S2=b2q.
(Ⅰ)求an与bn
(Ⅱ)设cn=3bn-λ•2 
an
3
(λ∈R),若{cn}满足:cn+1>cn对任意的n∈N*恒成立,求λ的取值范围.
▼优质解答
答案和解析
(Ⅰ)由S2=a1+a2=3+a2,b2=b1q=q,且b2+S2=12,S2=b2q.
q+3+a2=12
3+a2=q2
,消去a2得:q2+q-12=0,解得q=3或q=-4(舍),
a2=q2−3=32−3=6,则d=a2-a1=6-3=3,
从而an=a1+(n-1)d=3+3(n-1)=3n,
bn=b1qn−1=3n−1;
(Ⅱ)∵an=3n,bn=3n−1,∴cn=3bn−λ•2
an
3
=3n−λ2n.
∵cn+1>cn对任意的n∈N*恒成立,即:3n+1-λ•2n+1>3n-λ•2n恒成立,
整理得:λ•2n<2•3n对任意的n∈N*恒成立,
即:λ<2•(
3
2
)n对任意的n∈N*恒成立.
y=2•(
3
2
)x在区间[1,+∞)上单调递增,∴ymin=2•
3
2
=3,
∴λ<3.
∴λ的取值范围为(-∞,3).