早教吧 育儿知识 作业答案 考试题库 百科 知识分享

当x→∞时,函数e^x+sinx /e^x-cosx 极限值怎么求?

题目详情
当x→∞时,函数e^x+sinx /e^x-cosx 极限值怎么求?
▼优质解答
答案和解析
当x→∞时,函数e^x+sinx /e^x-cosx 极限值怎么求?

如果x→+∞则有lime^x+sinx /e^x-cosx =lim[1+(sinx/e^x)]/[1-(cosx/e^x)]=1+0/1-0=1
如果x→-∞则有lime^x=0 此时
lime^x+sinx /e^x-cosx=lim[1+(sinx/e^x)]/[1-(cosx/e^x)]=limu/v=limu'/v'
=lim cosx-sinx/cosx+sinx 极限不存在
综上所述 原函数右极限不存在 所以原函数x→∞无极限