早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2014•唐山三模)设数列{an}满足a1=2,an+1=4an-3n+1,n∈N*,则数列{an}的前n项和可以表示为()A.ni=1Ci-1n3n-i+1B.ni=1(Ci-1n3n-i+i)C.ni=1Cin3n-i+1D.ni=1(Cin3n-i+i)

题目详情
(2014•唐山三模)设数列{an}满足a1=2,an+1=4an-3n+1,n∈N*,则数列{an}的前n项和可以表示为(  )
A.
n
i=1
C
i-1
n
3n-i+1
B.
n
i=1
C
i-1
n
3n-i+i)
C.
n
i=1
C
i
n
3n-i+1
D.
n
i=1
C
i
n
3n-i+i)
▼优质解答
答案和解析
∵an+1=4an-3n+1,
∴an+1-(n+1)=4(an-n),
∵a1=2,
∴a1-1=1,
∴数列{an-n}是以1为首项,公比为4的等比数列.
an-n=4n-1,an=4n-1+n.
Sn=(1+1)+(4+2)+(42+3)+…+(4n-1+n)
=(1+2+3+…+n)+(1+4+42+…+4n-1
=
n(n+1)
2
+
4n-1
3

1
3
(4n-1)+
1
2
n(n+1)
=
1
3
[(3+1)n-1]+
1
2
n(n+1)
=
1
3
(3n+
C
1
n
3n-1+…+
C
n-2
n
32+
C
n-1
n
3+1-1)+
1
2
n(n+1)
=3n-1+
C
1
n
3n-2+…+
C
n-2
n
3+
C
n-1
n
+(1+2+…+n)
=
n
i=1
(
C
i-1
n
3n-i+i).
故选:B.