早教吧作业答案频道 -->数学-->
等比数列an的各项均为正数,(2a4),(a3),(4a5)成等差数列,且a3=2a2^2:(1)求数列an的)求数列an的通项公式(2)求数列an的通项公式(2)设bn=[(2n+5)/(2n+1)(2n+3)]an求数列bn的前n项和sn
题目详情
等比数列an的各项均为正数,(2a4),(a3),(4a5)成等差数列,且a3=2a2^2:(1)求数列an的)求数列an的通项公式(2
)求数列an的通项公式(2)设bn=[(2n+5)/(2n+1)(2n+3)]an求数列bn的前n项和sn
)求数列an的通项公式(2)设bn=[(2n+5)/(2n+1)(2n+3)]an求数列bn的前n项和sn
▼优质解答
答案和解析
等比数列an的各项均为正数
an>0
a1≠0,公比q>0
(2a4),(a3),(4a5)成等差数列
2a3=2a4+4a5
2a1*q^2=2a1*q^3+4a1*q^4
解得
q=1/2或q=-1(舍去)
a3=2a2^2
a1*q^2=2a1^2*q^2
解得
a1=1/2
数列an的通项公式
an=2^(-n)
求数列bn的前n项和sn
用列项求和法求解
bn=[(2n+5)/(2n+1)(2n+3)]an
bn=[2/(2n+1)-1/(2n+3)]*2^(-2)
bn=1/(2n+1)*2^(1-n)-1/(2n+3)*2^(-n)
b1=1/3-1/5*2^(-1)
b2=1/5*2^(-1)-1/7*2^(-2)
b3=1/7*2^(-2)-1/9*2^(-3)
…………………
bn-1=1/(2n-1)*2^(2-n)-1/(2n+1)*2^(1-n)
bn=1/(2n+1)*2^(1-n)-1/(2n+3)*2^(-n)
累加得
sn=1/3-1/(2n+3)*2^(-n)
解毕
an>0
a1≠0,公比q>0
(2a4),(a3),(4a5)成等差数列
2a3=2a4+4a5
2a1*q^2=2a1*q^3+4a1*q^4
解得
q=1/2或q=-1(舍去)
a3=2a2^2
a1*q^2=2a1^2*q^2
解得
a1=1/2
数列an的通项公式
an=2^(-n)
求数列bn的前n项和sn
用列项求和法求解
bn=[(2n+5)/(2n+1)(2n+3)]an
bn=[2/(2n+1)-1/(2n+3)]*2^(-2)
bn=1/(2n+1)*2^(1-n)-1/(2n+3)*2^(-n)
b1=1/3-1/5*2^(-1)
b2=1/5*2^(-1)-1/7*2^(-2)
b3=1/7*2^(-2)-1/9*2^(-3)
…………………
bn-1=1/(2n-1)*2^(2-n)-1/(2n+1)*2^(1-n)
bn=1/(2n+1)*2^(1-n)-1/(2n+3)*2^(-n)
累加得
sn=1/3-1/(2n+3)*2^(-n)
解毕
看了 等比数列an的各项均为正数,...的网友还看了以下:
1.公差不为零的等差数列的第2、3、6项构成等比数列,则公比为?2.二次方程a(n) x^2-a( 2020-05-13 …
求极限,N趋向无穷,n^2 ((a+1/n)^(1/n)-a^(1/n))n^2 *((a+1/n 2020-05-15 …
关于等差数列的简易问题,a(n)=a(1)+(n-1)*d(1)d是差前n项和公式S(n)=n*a 2020-05-19 …
排列31524的逆序列是多少?a[j]等于在排列中先于j但大于j的整数的个数;它量度j反序程度.数 2020-06-12 …
计算行列式a^n(a-1)^n……(a-n)^na^n-1(a-1)^n-1……(a-n)^n-1 2020-07-09 …
利用单调有界必有极限证明一下数列limxn存在,并求出极限1)x1=根号2……xn=根号(2x(n 2020-07-09 …
为什么要用这个减法S(n)-q*S(n)?是为了求什么因为x^n这是一个等比数列,首项为x,公比也 2020-07-11 …
利用范德蒙行列式求解.怎么求.a^n(a-1)^n…(a-n)^na^(n-1)(a-1)^(n- 2020-07-13 …
行线方程组的计算已知n维列向量α1,α2,.αn中,前n-1个向量线性相关,后n-1个向量线性无关 2020-07-26 …
数列{an}满足a(1)=1,a(n+1)-3a(n)=3^n数列{bn}满足b(n)=3^(-n) 2020-11-20 …