早教吧作业答案频道 -->数学-->
设f(x)在[0,+∞)上连续,在(0,+∞)内可导,且f'(x)单调增加,f(0)=0,证明f(x)/x在(0,+∞)内单调增加
题目详情
设f(x)在[0,+∞)上连续,在(0,+∞)内可导,且f'(x)单调增加,f(0)=0,证明f(x)/x在(0,+∞)内单调增加
▼优质解答
答案和解析
证明:f(x)在x>=0连续,在x>0可导,f'(x)单调增加所以:f''(x)>0设g(x)=f(x)/x求导:g'(x)=f'(x)/x-f(x)/x^2=[xf'(x)-f(x)]/x^2设h(x)=xf'(x)-f(x)求导:h'(x)=f'(x)+xf''(x)-f'(x)=xf''(x)>0所以:h(x)是单调递增函数...
看了设f(x)在[0,+∞)上连续...的网友还看了以下:
f(x)=2x-kX0当K为何值时,f(x)在X=0处连续f(x)=2x-kX<=0COSXX>0 2020-05-13 …
一个数学分析证明题证明:f(x)在[0,+∞]上连续可微,|f`(x)|≤常数C=>f(x)在[0 2020-05-14 …
由f(x)在x=0处连续知f(-x)在x=0处也连续?这句话怎么理解,f(x)在x=0处连续就一定 2020-05-20 …
关于导数和连续的问题函数在x点可导,那么在该点比连续,反之不成立.对于存在跳跃间断点的函数,例如分 2020-05-22 …
位似图形的变化...在平面坐标系中,依次连接点(0,0)(10,8)(6,0)(10,1)(10, 2020-06-07 …
1.设f(x)在[0,1]上连续,且f(0)=f(1),证明:存在x0∈[0,1],使得f(x0) 2020-06-18 …
f(x)在[0,1]连续,在(0,1)可导.f(0)=0,f(1)=1.证明存在两点a,b属于(f 2020-06-18 …
设f(x)在闭区间[0,1]连续,在(0,1)内可导且f(0)=0,f(1)=1/3求证:彐ξ设f 2020-06-23 …
数学题进来帮下1设函数f(x)={上面是x+1,x≤0下面是a,x>0,在点x=0处连续,则a=2 2020-07-15 …
急微分函数f(x)=|x-1|()A在点x=1处连续可导B在点x=1处不连续C在点x=0处连续可导D 2020-12-12 …