早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2014•武义县模拟)如图,点A是直线y=2x上一动点,以A为顶点的抛物线y=(x-m)2+h交直线y=2x于另一点E,交y轴于点F,抛物线的对称轴交x轴于点B,交直线EF于点C(点A,E,F两两不重合).(1

题目详情
(2014•武义县模拟)如图,点A是直线y=2x上一动点,以A为顶点的抛物线y=(x-m)2+h交直线y=2x于另一点E,交y轴于点F,抛物线的对称轴交x轴于点B,交直线EF于点C(点A,E,F两两不重合).
(1)若点A的横坐标为1,求点E的坐标.
(2)当点A运动到使EF与x轴平行时,求
AC
OF
的值.
(3)当点A在直线y=2x上运动时,是否存在使点F的位置最低的情形?如果存在,请求出此时点A的坐标及
AC
OF
 的值;如果不存在,请说明理由.
▼优质解答
答案和解析
(1)∵点A是直线y=2x上一动点,点A的横坐标为1,
∴A的纵坐标为2,
∵以A为顶点的抛物线y=(x-m)2+h,
∴y=(x-1)2+2,
∵抛物线交直线y=2x于另一点E,
y=2x
y=(x−1)2+2

解得:
x=1
y=2
x=3
y=6

∴点E的坐标(3,6);                                                     
(2)当EF∥x轴时,点E,F关于直线AC对称,
∴EC=CF.
∵CA∥y轴,
∴△ECA∽△EFO,
AC
OF
=
EC
EF
=
1
2
;                                                       
(3)当点A在直线y=2x上运动时,存在使点F的位置最低的情形,
理由如下:
点F的纵坐标为m2+2m,当m=-1时,点F的位置最低,此时A点坐标为(-1,-2),
∵抛物线解析式为y=(x+1)2-2.
求得该抛物线与直线y=2x的另一个交点E的坐标为(1,2),
∴OA=OE,
AC
OF
=