早教吧作业答案频道 -->其他-->
如图,菱形ABCD中,∠ABC=120°,菱形的边长为6,点E、F分别是边AD,CD上的两个动点(E、F与D不重合).(1)若E、F满足AE=DF.①求证:△BEF是等边三角形;②设△BEF面积为S,直接写出S的最大
题目详情
如图,菱形ABCD中,∠ABC=120°,菱形的边长为6,点E、F分别是边AD,CD上的两个动点(E、F与D不重合).
(1)若E、F满足AE=DF.
①求证:△BEF是等边三角形;
②设△BEF面积为S,直接写出S的最大值和最小值.
(2)若E、F满足∠BEF=60°,则△BEF是否仍一定为等边三角形?若是,请给出证明;若不是,请说明理由.
(1)若E、F满足AE=DF.
①求证:△BEF是等边三角形;
②设△BEF面积为S,直接写出S的最大值和最小值.
(2)若E、F满足∠BEF=60°,则△BEF是否仍一定为等边三角形?若是,请给出证明;若不是,请说明理由.
▼优质解答
答案和解析
(1)①证明:
∵四边形ABCD是菱形,∠ABC=120°
∴∠ADB=∠CDB=∠ABD=∠CBD=60° AD=CD
∴△ABC与△BCD是正三角形
∴BD=BC
∵AE=DF
∴DE=CF
在△BDE与△BFC中
∴△BDE≌△BFC
∴BE=BF,∠EBD=∠CBF
∴∠EBD+∠DBF=∠CBF+∠DBF=60°
∴∠EBF=60°
∴△BEF为等边三角形;
②由①知△BEF为等边三角形,其边长最大值为6,最小值为3
,
所以S的最大值是9
,最小值为
.
(2)△BEF是等边三角形过E作EG∥DB交AB与点G
可得△AEG是等边三角形
∴AE=AG,∠EGB=120°,∠AEG=60°
∴GB=ED,∠EGB=∠EDF
∵∠BEF=60°
∴∠GEB+∠DEF=60°
∵∠DFE+∠DEF=60°
∴∠GEB=∠DFE
∴△EGB≌△FDE
∴BE=EF
∴△BEF是等边三角形.
∵四边形ABCD是菱形,∠ABC=120°
∴∠ADB=∠CDB=∠ABD=∠CBD=60° AD=CD
∴△ABC与△BCD是正三角形
∴BD=BC
∵AE=DF
∴DE=CF
在△BDE与△BFC中
|
∴△BDE≌△BFC
∴BE=BF,∠EBD=∠CBF
∴∠EBD+∠DBF=∠CBF+∠DBF=60°
∴∠EBF=60°
∴△BEF为等边三角形;
②由①知△BEF为等边三角形,其边长最大值为6,最小值为3
3 |
所以S的最大值是9
3 |
27 |
4 |
3 |
(2)△BEF是等边三角形过E作EG∥DB交AB与点G
可得△AEG是等边三角形
∴AE=AG,∠EGB=120°,∠AEG=60°
∴GB=ED,∠EGB=∠EDF
∵∠BEF=60°
∴∠GEB+∠DEF=60°
∵∠DFE+∠DEF=60°
∴∠GEB=∠DFE
∴△EGB≌△FDE
∴BE=EF
∴△BEF是等边三角形.
看了如图,菱形ABCD中,∠ABC...的网友还看了以下:
有a、b、c、d、e、f、g七种物质.a为HCl,f的元素质量比为7:3.a能与b、f、d反应,c 2020-05-02 …
如图,三角形EDF是三角形ABC经过某种变换后得到的图形,观察点A与点E,点B与点D,点C与点F的 2020-05-16 …
某刑事案件的六个嫌疑分子A,B,C,D,E,F交待了以下材料:某刑事案件的六个嫌疑分子A,B,C, 2020-05-16 …
现有A,B,C,D,E,F,G七种短周期主族元素,原子序数依次增大.已知A与D,C与F分别同主族, 2020-07-07 …
把一张矩形ABCD纸片折叠,使点A与点E重合,点C与点F重合(E,F两点均在BD上)折痕分别为BH 2020-07-10 …
把一张矩形纸片ABCD按如图所示折叠,使A点与点E重合,点C与点F重合(E,F两点均在BD上)折痕 2020-07-10 …
把一张矩形纸片ABCD按如图所示折叠,使A点与点E重合,点C与点F重合(E,F两点均在BD上)折痕 2020-07-10 …
数学课上,张老师出示图1和下面框中条件:请你和艾思轲同学一起尝试探究下列问题:(1)①当点C与点F 2020-07-12 …
如图,已知Rt△ABC的直角边AC与Rt△DEF的直角边DF在同一条直线上,且AC=60c,BC= 2020-07-14 …
把一张矩形ABCD纸片按如图方式折叠,使点A与点E重合,点C与点F重合(E、F两点均在BD上),折 2020-07-30 …