早教吧作业答案频道 -->数学-->
如何证明四点共圆
题目详情
如何证明四点共圆
▼优质解答
答案和解析
方法1
从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,即可肯定这四点共圆.
方法2
把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆. (若能证明其两顶角为直角,即可肯定这四个点共圆,且斜边上两点连线为该圆直径.)
方法3
把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆.
方法4
把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆;或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两线段之积,即可肯定这四点也共圆.(根据托勒密定理的逆定理)
方法5
证被证共圆的点到某一定点的距离都相等,从而确定它们共圆. 上述五种基本方法中的每一种的根据,就是产生四点共圆的一种原因,因此当要求证四点共圆的问题时,首先就要根据命题的条件,并结合图形的特点,在这五种基本方法中选择一种证法,给予证明.
从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,即可肯定这四点共圆.
方法2
把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆. (若能证明其两顶角为直角,即可肯定这四个点共圆,且斜边上两点连线为该圆直径.)
方法3
把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆.
方法4
把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆;或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两线段之积,即可肯定这四点也共圆.(根据托勒密定理的逆定理)
方法5
证被证共圆的点到某一定点的距离都相等,从而确定它们共圆. 上述五种基本方法中的每一种的根据,就是产生四点共圆的一种原因,因此当要求证四点共圆的问题时,首先就要根据命题的条件,并结合图形的特点,在这五种基本方法中选择一种证法,给予证明.
看了 如何证明四点共圆...的网友还看了以下:
求证明正方形和圆形面积永不能完全等于的那个公式即证明任何几何意义上的正方形和圆形的面积,仅止于无限 2020-05-13 …
关于圆的证明题如图,C为圆O的直径AB上一点,圆B过点C,与AB的延长线交于点D,与圆O的一个交点 2020-05-16 …
一道有关圆的数学证明题如图,P为圆外1点,A是切点,PCB是圆的割线,C,B在圆上,证:PA^2= 2020-05-16 …
可以证明(至少有人证明了)圆柱体的截面是椭圆,但能不能证明,所有椭圆都能作为圆柱体的截面呢?(最好 2020-05-16 …
一个圆系方程的证明:如何证明过定点p(x0,y0)的圆系方程(x-x0)^2+(y-y0)^2+m 2020-05-20 …
如何证明被椭圆截得的直线的线段的中点在同一直线上已知一个椭圆x平方/4+y平方/9=1,一组平行直 2020-06-03 …
1、在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等.给出证明.2、半圆(或直径)所对的圆 2020-07-31 …
关于曲线切线的问题!为什么圆切线的定义和曲线的不一样?为什么对于来说圆的是一个切点,而曲线的是一个 2020-07-31 …
证明圆心角是圆周角的两倍证明圆心角是圆周角的两倍第三种如何证?即圆心角在圆周角外. 2020-08-01 …
如何证明平分圆内一角(顶点在圆内的角)的直径平分该角所对的弧如题,能否不用正弦定理证明 2020-08-02 …
相关搜索:如何证明四点共圆