早教吧作业答案频道 -->其他-->
如图,已知正方形ABCD的对角线AC,BD相交于点O,E是AC上的一点,过点A作AG⊥BE,垂足为G,AG交BD于点F.①试说明OE=OF;②若点E在AC的延长线上,AG⊥BE,交EB延长线于点G,AG的延长线交DB的延长
题目详情
如图,已知正方形ABCD的对角线AC,BD相交于点O,E是AC上的一点,过点A作AG⊥BE,垂足为G,AG交BD于点F.
①试说明OE=OF;
②若点E在AC的延长线上,AG⊥BE,交EB延长线于点G,AG的延长线交DB的延长线于点F,若其他条件不变,请作图,结论OE=OF仍成立吗?请说明你的理由.
①试说明OE=OF;
②若点E在AC的延长线上,AG⊥BE,交EB延长线于点G,AG的延长线交DB的延长线于点F,若其他条件不变,请作图,结论OE=OF仍成立吗?请说明你的理由.
▼优质解答
答案和解析
①证明:在正方形ABCD中AO=BO,∠AOB=∠BOE,
又∵AG⊥BE,
∴∠GAE+∠BEA=90°,∠EBD+∠AEB=90°.
∴∠EBD=∠GAE.
∴△AOF≌△BOE.
∴OE=OF.
②OE=OF仍成立.
在正方形ABCD中AO=BO,∠AOB=∠BOE,
又∵AG⊥BE,
∴∠GAE+∠BEA=90°,∠EBD+∠AEB=90°.
∴∠EBD=∠GAE.
又∵∠AOF=∠BOE,
∴△AOF≌△BOE.
∴OE=OF.
又∵AG⊥BE,
∴∠GAE+∠BEA=90°,∠EBD+∠AEB=90°.
∴∠EBD=∠GAE.
∴△AOF≌△BOE.
∴OE=OF.
②OE=OF仍成立.
在正方形ABCD中AO=BO,∠AOB=∠BOE,
又∵AG⊥BE,
∴∠GAE+∠BEA=90°,∠EBD+∠AEB=90°.
∴∠EBD=∠GAE.
又∵∠AOF=∠BOE,
∴△AOF≌△BOE.
∴OE=OF.
看了如图,已知正方形ABCD的对角...的网友还看了以下:
O、A、B、C为空间四个点,又OA、OB、OC为空间的一个基底,则()A.O、A、B、C四点不共线 2020-05-14 …
当x→0时,用o(x)表示比x高阶的无穷小,则下列式子中错误的是()A.x•o(x2)=o(x3) 2020-06-14 …
当x→0时,用o(x)表示比x高阶的无穷小,则下列式子中错误的是()A.xo(x2)=o(x3)B 2020-06-18 …
读图,回答下列各题。1.据各自然带在左图中的位置,能得出的正确结论是()A.O→a距离海洋越来越近 2020-07-15 …
读某季节北美0℃等温线分布图15,回答37-38题。37.O、P、Q三地气温从高到低排序为A.O>P 2020-11-02 …
已知,∠AOB.求作:∠A′O′B′,使∠A′O′B′=∠AOB.作法:(1)以为圆心,为半径画弧. 2020-11-06 …
读图3和图4,回答18~19题。小题1:据各自然带在图3中的位置,能得出的正确结论是()A.O→a距 2020-11-10 …
阿基米德撬动地球的设想示意图,如图所示(图中O为支点).用垂直杠杆向下的作用力撬动地球时,动力臂是( 2020-11-30 …
当x→0时,用o(x)表示比x高阶的无穷小,则下列式子中错误的是()A.x?o(x2)=o(x3)B 2020-12-05 …
读北美0℃等温线分布图,回答问题。小题1:此图季节是A.春季B.夏季C.秋季D.冬季小题2:请从高到 2020-12-07 …