早教吧作业答案频道 -->其他-->
如图所示:AM∥DN,AE、DE分别平分∠MAD和∠AND,并交于E点.过点E的直线分别交AM、DN于B、C.(1)如图,当点B、C分别位于点AD的同侧时,猜想AD、AB、CD之间的存在的数量关系:.(2)试
题目详情
如图所示:AM∥DN,AE、DE分别平分∠MAD和∠AND,并交于E点.过点E的直线分别交AM、DN于B、C.
(1)如图,当点B、C分别位于点AD的同侧时,猜想AD、AB、CD之间的存在的数量关系:______.
(2)试证明你的猜想.
(3)若点B、C分别位于点AD的两侧时,试写出AD、AB、CD之间的关系,并选择一个写出证明过程.
(1)如图,当点B、C分别位于点AD的同侧时,猜想AD、AB、CD之间的存在的数量关系:______.
(2)试证明你的猜想.
(3)若点B、C分别位于点AD的两侧时,试写出AD、AB、CD之间的关系,并选择一个写出证明过程.
▼优质解答
答案和解析
(1)AD=AB+CD;
(2)证明:在AD上截取AF=AB,连接EF.
∵AE平分∠BAD,
∴∠BAE=∠FAE.
在△ABE和△AFE中,
AB=AF,∠BAE=∠FAE,AE=AE,
∴△ABE≌△AFE,
∴∠ABC=∠AFE.
∵AB∥CD,
∴∠ABC+∠BCD=180°,
又∵∠AFE+∠DFE=180°,
∴∠DFE=∠BCD.
∵DE平分∠ADC,
∴∠ADE=∠CDE.
在△FDE和△CDE中,
∠DFE=∠DCE,∠ADE=∠CDE,DE=DE,
∴△FDE≌△CDE,
∴DF=CD,
∴AF+DF=AB+CD.
即AD=AB+CD;
(3)证明:
第一种情况:当点B位于点A左侧,点C位于点D右侧时,DC=AD+AB.
在CD上截取DF=AD,连接EF.
∵DE平分∠ADC
∴∠ADE=∠CDE
在△ADE和△FDE中,
DA=DF,∠ADE=∠CDE,DE=DE,
∴△ADE≌△FDE.
∴EA=EF,∠DAE=∠DFE.
∵AE平分∠DAM,
∴∠DAE=∠EAM,
∴∠DFE=∠EAM,
又∵∠BAE+∠EAM=180°,∠DFE+∠CFE=180°,
∴∠BAE=∠CFE.
∵AM∥DN,
∴∠ABC=∠BCD.
在△BAE和△CFE中,
∠BAE=∠CFE,∠ABC=∠BCD,EA=EF,
∴△BAE≌△CFE,
∴AB=FC.
∵DC=DF+FC,
∴DC=AD+AB;
第二种情况:当点B位于点A右侧,点C位于点D左侧时,AB=AD+CD.
在AB上截取AF=AD,连接EF.
∵AE平分∠BAD,
∴∠BAE=∠DAE.
在△ADE和△AEF中,
AF=AD,∠BAE=∠DAE,AE=AE,
∴△AEF≌△AED,
∴EF=ED,
∴∠AFE=∠ADE.
∵DE平分∠ADN,
∴∠ADE=∠EDN,
∴∠AFE=∠EDN,
又∵∠AFE+∠BFE=180°,∠EDN+∠EDC=180°,
∴∠BFE=∠EDC.
∵AM∥DN,
∴∠ABC=∠BCD.
在△BEF和△CED中,
∠BFE=∠EDC,∠ABC=∠BCD,DE=EF,
∴△BFE≌△CDE,
∴CD=BF.
∵AB=AF+FB,
∴AB=AD+CD.
(2)证明:在AD上截取AF=AB,连接EF.
∵AE平分∠BAD,
∴∠BAE=∠FAE.
在△ABE和△AFE中,
AB=AF,∠BAE=∠FAE,AE=AE,
∴△ABE≌△AFE,
∴∠ABC=∠AFE.
∵AB∥CD,
∴∠ABC+∠BCD=180°,
又∵∠AFE+∠DFE=180°,
∴∠DFE=∠BCD.
∵DE平分∠ADC,
∴∠ADE=∠CDE.
在△FDE和△CDE中,
∠DFE=∠DCE,∠ADE=∠CDE,DE=DE,
∴△FDE≌△CDE,
∴DF=CD,
∴AF+DF=AB+CD.
即AD=AB+CD;
(3)证明:
第一种情况:当点B位于点A左侧,点C位于点D右侧时,DC=AD+AB.
在CD上截取DF=AD,连接EF.
∵DE平分∠ADC
∴∠ADE=∠CDE
在△ADE和△FDE中,
DA=DF,∠ADE=∠CDE,DE=DE,
∴△ADE≌△FDE.
∴EA=EF,∠DAE=∠DFE.
∵AE平分∠DAM,
∴∠DAE=∠EAM,
∴∠DFE=∠EAM,
又∵∠BAE+∠EAM=180°,∠DFE+∠CFE=180°,
∴∠BAE=∠CFE.
∵AM∥DN,
∴∠ABC=∠BCD.
在△BAE和△CFE中,
∠BAE=∠CFE,∠ABC=∠BCD,EA=EF,
∴△BAE≌△CFE,
∴AB=FC.
∵DC=DF+FC,
∴DC=AD+AB;
第二种情况:当点B位于点A右侧,点C位于点D左侧时,AB=AD+CD.
在AB上截取AF=AD,连接EF.
∵AE平分∠BAD,
∴∠BAE=∠DAE.
在△ADE和△AEF中,
AF=AD,∠BAE=∠DAE,AE=AE,
∴△AEF≌△AED,
∴EF=ED,
∴∠AFE=∠ADE.
∵DE平分∠ADN,
∴∠ADE=∠EDN,
∴∠AFE=∠EDN,
又∵∠AFE+∠BFE=180°,∠EDN+∠EDC=180°,
∴∠BFE=∠EDC.
∵AM∥DN,
∴∠ABC=∠BCD.
在△BEF和△CED中,
∠BFE=∠EDC,∠ABC=∠BCD,DE=EF,
∴△BFE≌△CDE,
∴CD=BF.
∵AB=AF+FB,
∴AB=AD+CD.
看了如图所示:AM∥DN,AE、D...的网友还看了以下:
如图abc三点在同一条直线上,分别以ab,bc为边,在ac同侧做等边三角形ABD和等边BCE,连接a 2020-03-31 …
在平行四边形abcd中,点E F分别为边CD,AB上的一点,AE平行CF,且BE,DF分别交CF, 2020-05-16 …
在长方体ABCD-A1B1C1D1中,E,P分别是BC,A1D1的中点,M,N分别是AE,CD1的 2020-05-16 …
在直线上顺次取A,B,C三点,分别以AB,BC为边长在直线的同侧作正三角形,作得两个正三角形的另一 2020-06-08 …
(2014•烟台)在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC, 2020-06-12 …
在△ABC中,D为BC中点,BE、CF与射线AE分别相交于点E、F(射线AE不经过点D).(1)如 2020-06-15 …
正方形的判定C、D在线段AB上,CE垂直于AB,CE=DB,CR//AE,且过D点和B点作垂直于A 2020-06-16 …
如图,直线AD与AE相交于点A,直线BC分别交AD、AE于点B、C,直线DE分别交AD、AE于点D 2020-07-23 …
在正方形ABCD中,动点E、F分别从D、C两点同时出发,以相同的速度在直线DC、CB上移动(1)如图 2020-11-02 …
已知:△ABC是等边三角形,分别过点A,B作AF∥BC,BE∥AC,AF,BE分别与过点C的直线交于 2021-01-24 …