早教吧作业答案频道 -->其他-->
设A为正定实对称矩阵,证明:A中绝对值最大者必位于A的对角线上.
题目详情
设A为正定实对称矩阵,证明:A中绝对值最大者必位于A的对角线上.
▼优质解答
答案和解析
证明:反证法,假设绝对值最大的不在主对角线上,而是在第i行,第j列,不妨设i<j
考虑二阶主子式,有
=aiiajj−aijaji=aiiajj−(aij)2<0
由于正定矩阵的二阶主子式都是大于0的,矛盾
因此假设不成立
故A中绝对值最大者必位于A的对角线上.
考虑二阶主子式,有
|
由于正定矩阵的二阶主子式都是大于0的,矛盾
因此假设不成立
故A中绝对值最大者必位于A的对角线上.
看了设A为正定实对称矩阵,证明:A...的网友还看了以下:
设A是反对称矩阵,B是对称矩阵,证明:(1)A²是对称矩阵,(2)AB-BA是对称矩阵 2020-04-05 …
设A是n维反对称矩阵,证明对任意非零常数c,矩阵A+cE恒可逆反对称矩阵的特征值是0或者纯虚数怎么 2020-04-26 …
(1)A、B均为n阶实对称正定矩阵,证明A-B正定则B^(-1)-A^(-1)亦正定(2)A、(1 2020-05-13 …
关于线性代数的问题,急·····1)设A为n阶矩阵,若存在正整数k使得A^k=O,则称A为幂零矩阵 2020-05-14 …
设n阶矩阵A满足A*A=A,E为n阶单位阵,证明:R(A)+R(A-E)=n 2020-05-15 …
对称矩阵问题设A是反对称矩阵B是对称矩阵证明1.A²是对称矩阵2.AB-BA是对称矩阵3.AB是对 2020-06-03 …
线性代数的...证明题若实型矩阵A满足A^T=-A,则称A为反称实矩阵.证明:反称实矩阵的特征值为 2020-06-14 …
矩阵·,挑战看看呗~1.证明:若AB=0且A可逆,则B=02.证明:AX=AY且A可逆,则X=Y3 2020-07-15 …
一个关于矩阵的小问题A,B为两个n阶对称矩阵,证明:AB为对称矩阵的充要条件是AB=BA.证:若A 2020-08-02 …
设A与B是两个同阶矩阵,证明以下命题:A与B是两个反对称矩阵,则A和B之和与差必为反对称矩阵.请问此 2021-01-12 …