早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知抛物线y=。(1)试说明:无论m为何实数,该抛物线与x轴总有两个不同的交点;(2)如图,当该抛物线的对称轴为直线x=3时,抛物线的顶点为点C,直线y=x-1与抛物线交于A

题目详情
已知抛物线y=
(1)试说明:无论m为何实数,该抛物线与x轴总有两个不同的交点;
(2)如图,当该抛物线的对称轴为直线x=3时,抛物线的顶点为点C,直线y=x-1与抛物线交于A、B两点,并与它的对称轴交于点D;
①抛物线上是否存在一点P使得四边形ACPD是正方形?若存在,求出点P的坐标;若不存在,说明理由;
②平移直线CD,交直线AB于点M,交抛物线于点N,通过怎样的平移能使得C、D、M、N为顶点的四边形是平行四边形。
▼优质解答
答案和解析
已知抛物线y=
(1)试说明:无论m为何实数,该抛物线与x轴总有两个不同的交点;
(2)如图,当该抛物线的对称轴为直线x=3时,抛物线的顶点为点C,直线y=x-1与抛物线交于A、B两点,并与它的对称轴交于点D;
①抛物线上是否存在一点P使得四边形ACPD是正方形?若存在,求出点P的坐标;若不存在,说明理由;
②平移直线CD,交直线AB于点M,交抛物线于点N,通过怎样的平移能使得C、D、M、N为顶点的四边形是平行四边形。

(1)
∵不管m为何实数,总有(m-2) 2 ≥0,
>0,
∴无论m为何实数,该抛物线与x轴总有两个不同的交点;
(2)∵抛物线的对称轴为直线x=3,
∴m=3,
抛物线的解析式为 ,顶点C坐标为(3,-2),
解方程组 ,解得 ,所以A的坐标为(1,0)、B的坐标为(7,6),∵x=3时y=x-1=3-1=2,
∴D的坐标为(3,2),
设抛物线的对称轴与x轴的交点为E,则E的坐标为(3,0),所以AE=BE=3,DE=CE=2,
①假设抛物线上存在一点P使得四边形ACPD是正方形,则AP、CD互相垂直平分且相等,于是P与点B重合,但AP=6,CD=4,AP≠CD,故抛物线上不存在一点P使得四边形ACPD是正方形;
②(Ⅰ)设直线CD向右平移n个单位(n>0)可使得C、D、M、N为顶点的四边形是平行四边形,
则直线CD的解析式为x=3+n,直线CD与直线y=x-1交于点M(3+n,2+n),
又∵D的坐标为(3,2),C坐标为(3,-2),
∴D通过向下平移4个单位得到C,
∵C、D、M、N为顶点的四边形是平行四边形,
∴四边形CDMN是平行四边形或四边形CDNM是平行四边形,
(ⅰ)当四边形CDMN是平行四边形,
∴M向下平移4个单位得N,
∴N坐标为(3+n,n-2),
又N在抛物线 上,
,解得 (不合题意,舍去),
(ⅱ)当四边形CDNM是平行四边形,∴M向上平移4个单位得N,
∴N坐标为(3+n,n+6),
又N在抛物线 上,∴ ,解得 (不合题意,舍去),
(Ⅱ)设直线CD向左平移n个单位(n>0)可使得C、D、M、N为顶点的四边形是平行四边形,
则直线CD的解析式为x=3-n,直线CD与直线y=x-1交于点M(3-n,2-n),
又∵D的坐标为(3,2),C坐标为(3,-2),
∴D通过向下平移4个单位得到C,
∵C、D、M、N为顶点的四边形是平行四边形,
∴四边形CDMN是平行四边形或四边形CDNM是平行四边形;
(ⅰ)当四边形CDMN是平行四边形,
∴M向下平移4个单位得N,
∴N坐标为(3-n,-2-n),
又N在抛物线 上,
,解得 (不合题意,舍去), (不合题意,舍去);
(ⅱ)当四边形CDNM是平行四边形,
∴M向上平移4个单位得N,
∴N坐标为(3-n,6-n),
又N在抛物线 上,
,解得 (不合题意,舍去),
综上所述,直线CD向右平移2或( )个单位或向左平移( )个单位,可使得C、D、M、N为顶点的四边形是平行四边形。