阅读下文,回答1—4题。寂寞梁实秋寂寞是一种清福。我在小小的书斋里,焚起一炉香,袅袅的一缕烟线笔直地上升,一直戳到顶棚,好像屋里的空气是绝对的静止,我的
阅读下文,回答1—4题。
寂 寞
梁实秋
寂寞是一种清福。我在小小的书斋里,焚起一炉香,袅袅的一缕烟线笔直地上升,一直戳到顶棚,好像屋里的空气是绝对的静止,我的呼吸都没有搅动出一点波澜似的。我独自暗暗地望着那条烟线发怔。屋外庭院中的紫丁香还带着不少嫣红焦黄的叶子,枯叶乱枝的声响可以很清晰地听到,先是一小声清脆的折断声,然后是撞击着枝干的磕碰声,最后是落到空阶上的拍打声。这时节,我感到了寂寞。 在这寂寞中我意识到了我自己的存——片刻的孤立的存在 。这种境界并不太易得,与环境有关,更与心境有关。寂寞不一定要到深山大泽里去寻求,只要内心清净,随便在市廛里,陋巷里,都可以感觉到一种空灵悠逸的境界,所谓“心远地自偏”是也。在这种境界中,我们可以在想象中翱翔,跳出尘世的渣滓,与古人同游,所以我说,寂寞是一种清福。
在礼拜堂里我也有过同样的经验。在伟大庄严的教堂里,从彩色玻璃窗透进一股不很明亮的光线,沉重的琴声好像是把人的心都洗淘了一番似的,我感到了我自己的渺小。这渺小的感觉便是我意识到我自己存在的明证。因为平常连这一点点渺小之感都不会有的!
我的朋友肖丽先生卜居在广济寺里,据他告诉我,在最近一个夜晚,月光皎洁,天空如洗,他独自踱出僧房,立在大雄宝殿的石阶上,翘首四望,月色是那样的晶明,蓊郁的树是那样的静止,寺院是那样的肃穆,他忽然顿有所悟,悟到永恒,悟到自我的渺小,悟到四大皆空的境界。我相信一个人常有这样的经验,他的胸襟自然豁达寥廓。
但是寂寞的清福是不容易长久享受的。它只是一瞬间的存在。世界有太多的东西不时的提醒我们,提醒我们一件煞风景的事实: 我们的两只脚是踏在地上的呀 !一只苍蝇撞在玻璃窗上挣扎不出去,一声“老爷太太可怜可怜我这个瞎子吧”,都可以使我们从寂寞中间一头栽出去,栽到苦恼烦躁的漩涡里去。至于“催租吏”一类的东西打上门来,或者“石壕吏”之类的东西半夜捉人,其足以使人败兴生气,就更不待言了。这还是外界的感触,如果自己的内心先六根不净,随时都意马心猿,则虽处在最寂寞的境地里,他也是慌成一片,忙成一团,六神无主,暴跳如雷,他永远不得享受寂寞的清福。
如此说来,所谓寂寞不即是一种唯心论,一种逃避现实的现象吗?也可以说是,一个高韬隐遁的人,在从前的社会里还可以存在,而且还颇受人敬重,在现在的社会里是绝对的不可能。现在似乎只有两种类型的人了,一是在现实的泥溷中打转的人,一是偶然也从泥溷中昂起头来喘口气的人。寂寞便是供人喘息的几口新空气。喘几口气之后还得耐心地低头钻进泥溷里去。所以我对于能够昂首物外的举动并不愿再多苛责。逃避现实,如果现实真能逃避,吾寤寐以求之!有过静坐经验的人该知道,最初努力把握着自己的心,叫它什么也不想,是多么困难的事!那是强迫自己入于寂寞的手段,所谓参禅入定完全属于此类。我所赞美的寂寞,稍异于是。我所谓的寂寞,是随缘偶得,无需强求,一刹间的妙悟也不嫌短,失掉了也不必怅惘。但凡我有一刻寂寞,我要好好地享受它。
|
(1)“在这寂寞中,我意识到我自己的存在——片刻的 孤立 的存在”
孤立:
(2)“我们的 两只脚是踏在地上的 呀”
两只脚是踏在地上的:
2.文章有对于“书斋中”“礼拜里”“广济寺里”的三处环境描写。写了环境的什么特点?
有什么作用?
3.作者在文中说“寂寞的清福是不容易长久的”,文中有哪些短语和这句话的意思呼应?并说说它们表达了作者什么样的思想感情。
4.作者在文章开头说,“寂寞是一种清福”,在结尾说“我有一刻寂寞,我要好好享受它”。
其实,历史上不乏有作者这样思想的人。试举两列,写成一段话。不少于60字。
已知数列﹛an﹜满足an+1=an+2×3n+1,a₁=3,求数列﹛an﹜的通项公式.n+1是下标 2020-04-27 …
数列an中,a3=1,a1+a2+.+an=an+1(n+1)是下标,(n=1,2,3.)求a1, 2020-05-16 …
已知数列{an}满足a1=2,an+1【n+1是下标】=1+an/1-an(n属于N+),则a1· 2020-05-16 …
已知数列{an}中,a1=1,a(n+1)+2an+3=0,判断数列{an+1}是否为等比数列?并 2020-05-17 …
已知直线l1:2x+y-6=0和点A(1,-1),过点A作直线l与l1相交于B点,且AB的绝对值= 2020-06-03 …
一道数学题的详解,急,已知Sn是数列{an}的前N项和,且an=(Sn-1)+2(n大于Sn-1的 2020-06-05 …
数列题证明已知:f(x)=-√(4+1/x^2),数列{an}的前n项和为Sn,点Pn(an,-1 2020-06-06 …
设数列{an}满足a1=A,an+1=Ban+C(n属于自然数A,B,C为常数),试求该数列的通项 2020-06-18 …
已知数列{An}满足An+1=1/16(1+4An+√(1+24An)),A1=1,用换元法法求数 2020-06-26 …
1.√(x+1)2+(y+1)2=√(x-3)2+(y-7)2 整理 得x+2y-7=0 求中间详 2020-06-27 …