早教吧作业答案频道 -->数学-->
用数学归纳法证明等式1+3+5+…+(2n-1)=n2(n∈N*)的过程中,第二步假设n=k时等式成立,则当n=k+1时应得到()A.1+3+5+…+(2k+1)=k2B.1+3+5+…+(2k+1)=(k+1)2C.1+3+5+…+(2k+1)=(k+2)2D.1+
题目详情
用数学归纳法证明等式1+3+5+…+(2n-1)=n2(n∈N*)的过程中,第二步假设n=k时等式成立,则当n=k+1时应得到( )
A. 1+3+5+…+(2k+1)=k2
B. 1+3+5+…+(2k+1)=(k+1)2
C. 1+3+5+…+(2k+1)=(k+2)2
D. 1+3+5+…+(2k+1)=(k+3)2
A. 1+3+5+…+(2k+1)=k2
B. 1+3+5+…+(2k+1)=(k+1)2
C. 1+3+5+…+(2k+1)=(k+2)2
D. 1+3+5+…+(2k+1)=(k+3)2
▼优质解答
答案和解析
因为假设n=k时等式成立,即1+3+5+…+(2k-1)=k2
当n=k+1时,等式左边=1+3+5+…+(2k-1)+(2k+1)=k2+(2k+1)=(k+1)2.
故选B.
当n=k+1时,等式左边=1+3+5+…+(2k-1)+(2k+1)=k2+(2k+1)=(k+1)2.
故选B.
看了用数学归纳法证明等式1+3+5...的网友还看了以下:
(1)叙述并证明等比数列的前n项和公式;(2)已知Sn是等比数列{an}的前n项和,S3,S9,S 2020-05-13 …
已知函数f(x)=kx+p(k≠0)及实数m、n,(m0,f(n)>0,则对一切x∈[m,n],都 2020-05-13 …
关于数学归纳法证明在用数学归纳法证明等式:1^2+2^2+...+n^2+...+2^2+1^2= 2020-05-22 …
C(n,k)=C(n-1,k-1)+C(n-1,k)为什么这个等式成立?请大神帮我解释下C(n,k 2020-06-12 …
用数学归纳法证明(n+1)(n+2)…(n+n)=2^n·1·3·……·(2n-1)(n∈N*), 2020-08-01 …
已知n为正偶数,用数学归纳法证明()1时,若已假设n=k(k≥2为偶数)时命题为真,则还需要用归纳 2020-08-01 …
对于不等式<n+1(n∈N*),某同学用数学归纳法的证明过程如下:(1)当n=1时,<1+1,不等 2020-08-03 …
已知n为正偶数,用数学归纳法证明1-12+13-14+…+1n−1=2(1n+2+1n+4+…+12 2020-11-07 …
应用数学归纳法时,假设N=K时公式成立,证明N=K+1公式成立的过程中能否认为N=K-1时公式是成立 2020-12-05 …
用数学归纳法证明等式1+3+5+…+(2n-1)=n2(n∈N*)的过程中,第二步假设n=k时等式成 2020-12-05 …