早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图:已知AB是圆O的直径,BC是圆O的弦,圆O的割线DEF垂直于AB于点G,交BC于点H,DC=DH.(1)求证:DC是圆O的切线;(2)请你再添加一个条件,可使结论BH2=BG•BO成立,说明理由;(3)在满

题目详情
如图:已知AB是圆O的直径,BC是圆O的弦,圆O的割线DEF垂直于AB于点G,交BC于点H,DC=DH.
(1)求证:DC是圆O的切线;
(2)请你再添加一个条件,可使结论BH2=BG•BO成立,说明理由;
(3)在满足以上所有的条件下,AB=10,EF=8.求sin∠A的值.
▼优质解答
答案和解析
(1)连接OD、OC相交于M,
∵∠ACB=90°,CO=AO,
∴∠ACO=∠CAO,∠CAO+∠B=90°,∠B+∠BHG=90°.
∴∠CAO=∠BHG.
∵DC=DH,
∴∠DCH=∠DHC.
∴∠DCH=∠ACO.
∴∠DCH+∠HCO=∠ACO+∠OCH=90°.
∴OC⊥PC.
即DC为切线.

(2)加条件:H为BC的中点,
∴OH⊥HB.
∴△BHG∽△BOH.
BH
BO
BG
BH

∴BH2=BD•BG.

(3)∵AB=10,EF=8,
∴EG=4.
∴AG•BG=EG2=16.
∴(AB-BG)BG=16.
即BG2-10BG+16=0.
∴BG=2或8(舍).
∵BH2=BG•BO=2×5=10,
∴BH=
10

BC=2
10

∴sinA=
BC
AB
2
10
10
10
5
看了如图:已知AB是圆O的直径,B...的网友还看了以下: