早教吧作业答案频道 -->其他-->
如图:已知AB是圆O的直径,BC是圆O的弦,圆O的割线DEF垂直于AB于点G,交BC于点H,DC=DH.(1)求证:DC是圆O的切线;(2)请你再添加一个条件,可使结论BH2=BG•BO成立,说明理由;(3)在满
题目详情
如图:已知AB是圆O的直径,BC是圆O的弦,圆O的割线DEF垂直于AB于点G,交BC于点H,DC=DH.
(1)求证:DC是圆O的切线;
(2)请你再添加一个条件,可使结论BH2=BG•BO成立,说明理由;
(3)在满足以上所有的条件下,AB=10,EF=8.求sin∠A的值.
(1)求证:DC是圆O的切线;
(2)请你再添加一个条件,可使结论BH2=BG•BO成立,说明理由;
(3)在满足以上所有的条件下,AB=10,EF=8.求sin∠A的值.
▼优质解答
答案和解析
(1)连接OD、OC相交于M,
∵∠ACB=90°,CO=AO,
∴∠ACO=∠CAO,∠CAO+∠B=90°,∠B+∠BHG=90°.
∴∠CAO=∠BHG.
∵DC=DH,
∴∠DCH=∠DHC.
∴∠DCH=∠ACO.
∴∠DCH+∠HCO=∠ACO+∠OCH=90°.
∴OC⊥PC.
即DC为切线.
(2)加条件:H为BC的中点,
∴OH⊥HB.
∴△BHG∽△BOH.
∴
=
.
∴BH2=BD•BG.
(3)∵AB=10,EF=8,
∴EG=4.
∴AG•BG=EG2=16.
∴(AB-BG)BG=16.
即BG2-10BG+16=0.
∴BG=2或8(舍).
∵BH2=BG•BO=2×5=10,
∴BH=
.
∴BC=2
.
∴sinA=
=
=
.
∵∠ACB=90°,CO=AO,
∴∠ACO=∠CAO,∠CAO+∠B=90°,∠B+∠BHG=90°.
∴∠CAO=∠BHG.
∵DC=DH,
∴∠DCH=∠DHC.
∴∠DCH=∠ACO.
∴∠DCH+∠HCO=∠ACO+∠OCH=90°.
∴OC⊥PC.
即DC为切线.
(2)加条件:H为BC的中点,
∴OH⊥HB.
∴△BHG∽△BOH.
∴
BH |
BO |
BG |
BH |
∴BH2=BD•BG.
(3)∵AB=10,EF=8,
∴EG=4.
∴AG•BG=EG2=16.
∴(AB-BG)BG=16.
即BG2-10BG+16=0.
∴BG=2或8(舍).
∵BH2=BG•BO=2×5=10,
∴BH=
10 |
∴BC=2
10 |
∴sinA=
BC |
AB |
2
| ||
10 |
| ||
5 |
看了如图:已知AB是圆O的直径,B...的网友还看了以下:
室内有一根直尺,无论怎样放置,在地面上总有这样的直线与直尺所在的直线()答案是垂直,但我认为直尺与地 2020-03-30 …
两条射线能组成直线吗?我的态度:不能我的理解:直线能从其上的任意一点向两端无限延伸线段是从一个端点 2020-05-21 …
在同一平面内,过一点可能有两条以上的直线与已知直线平行吗?任意画一条直线a,在直线外取点P,并过点 2020-06-06 …
已知直线过点(1)若直线在坐标轴上的截距相等,求直线的方程;(2)若直线与坐标轴的正半轴相交,求使 2020-07-13 …
过双曲线x^2/a^2-y^2/5-a^2(a>0)右焦点F作一条直线,当直线斜率为2时,过双曲线 2020-08-01 …
高二数学题,急已知直线l平行的直线方程为2x-3y+1=0,点p(2,1).一问:求过p且与直线l 2020-08-01 …
异面直线判定定理中过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线怎样理解?后半句 2020-08-02 …
如图.过点A1(1,0)作x轴的垂线,交直线y=2x于点B1;点A2与点O关于直线A1B1对称,过点 2020-10-31 …
2013•内江)如图,已知直线l:y=根号3x,过点M(2,0)作x轴的垂线交直线l于点N,过点N作 2020-11-06 …
(2014•珠海二模)已知抛物线C:x2=y,直线l与抛物线C交于A、B不同两点,且OA+OB=(p 2020-11-12 …