早教吧作业答案频道 -->其他-->
(2011•盐城一模)已知函数f(x)=x2+a|lnx-1|,g(x)=x|x-a|+2-2ln2,a>0.(Ⅰ)当a=1时,求函数f(x)在区间[1,e]上的最大值;(Ⅱ)若f(x)≥32a,x∈[1,+∞)恒成立,求a的取值范围;(Ⅲ)对
题目详情
(2011•盐城一模)已知函数f(x)=x2+a|lnx-1|,g(x)=x|x-a|+2-2ln2,a>0.
(Ⅰ)当a=1时,求函数f(x)在区间[1,e]上的最大值;
(Ⅱ)若f(x)≥
a,x∈[1,+∞)恒成立,求a的取值范围;
(Ⅲ)对任意x1∈[1,+∞),总存在惟一的x2∈[2,+∞),使得f(x1)=g(x2)成立,求a的取值范围.
(Ⅰ)当a=1时,求函数f(x)在区间[1,e]上的最大值;
(Ⅱ)若f(x)≥
3 |
2 |
(Ⅲ)对任意x1∈[1,+∞),总存在惟一的x2∈[2,+∞),使得f(x1)=g(x2)成立,求a的取值范围.
▼优质解答
答案和解析
(Ⅰ)当a=1,x∈[1,e]时f(x)=x2-lnx+1,f′(x)=2x−
≥f′(1)=1,
所以f(x)在[1,e]递增,所以f(x)max=f(e)=e2(4分)
(Ⅱ)①当x≥e时,f(x)=x2+alnx-a,f'(x)=2x+
,a>0,∴f(x)>0恒成立,
∴f(x)在[e,+∞)上增函数,故当x=e时,ymin=f(e)=e2(5分)
②当1≤x<e时,f(x)=x2-alnx+a,f'(x)=2x-
=
(x+
)(x-
),
(i)当
≤1即0<a≤2时,f'(x)在x∈(1,e)时为正数,所以f(x)在区间[1,e)上为增函数,
故当x=1时,ymin=1+a,且此时f(1)<f(e)=e2(7分)
(ii)当1<
<e,即2<a<2e2时,f'(x)在x∈(1,
)时为负数,在间x∈(
1 |
x |
所以f(x)在[1,e]递增,所以f(x)max=f(e)=e2(4分)
(Ⅱ)①当x≥e时,f(x)=x2+alnx-a,f'(x)=2x+
a |
x |
∴f(x)在[e,+∞)上增函数,故当x=e时,ymin=f(e)=e2(5分)
②当1≤x<e时,f(x)=x2-alnx+a,f'(x)=2x-
a |
x |
2 |
x |
|
|
(i)当
|
故当x=1时,ymin=1+a,且此时f(1)<f(e)=e2(7分)
(ii)当1<
|
|
作业帮用户
2017-11-12
举报
|
看了(2011•盐城一模)已知函数...的网友还看了以下:
对m∈(0,5】,不等式x^2+(2m-1)x>4x+2m-4 恒成立 我看到的答案是x<-6或x 2020-05-16 …
请教下此题:定义域为R的函数满足f(x+1)=2f(x),当x∈[0,1]时,f(x)=x^2-4 2020-05-17 …
一道高一二次函数题设二次函数f(x)=ax²+bx+c(a,b,c∈R)满足下列条件:1>当x∈R 2020-05-20 …
高一二次函数求值设二次函数f(x)满足下列条件:1,当X属于R时,f(x)的最小值为0,且f(x- 2020-05-21 …
1、当x∈(0,3)时,2x²+mx-1<0恒成立,求m取值范围2、当x∈(0,1/2)时,x²+ 2020-06-05 …
已知:f(x)=(a-2)x2+2(a-2)x-4,(1)当x∈R时,恒有f(x)<0,求a的取值 2020-06-12 …
函数Y的定义域为R,即要求对任意实数x,mx²-6mx+m+8≥0恒成立.(1)当m=0时,Y=根 2020-06-29 …
已知函数f(x)=a^x满足条件:当x∈(-∞,0)时,f(x)>1:当x∈(0,1]时,不等式f 2020-07-09 …
1.若对于任意a属于[-1,1],函数f(x)=x^2+(a-4)x+4-2a的值恒大于零,则x的 2020-08-01 …
已知函数f(x)=(1+ln(x+1))/x,当x>0时,f(x)>k/(x+1)恒成立,求正整数k 2020-10-31 …