早教吧作业答案频道 -->数学-->
已知函数f(x)=x^2+1,且g(x)=f[f(x)],G(x)=g(x)-af(x)已知函数f(x)=x^2+1且g(x)=f[f(x)],G(x)=g(x)-af(x).试问是否存在实数a使得G(x)在(负无穷,-1)上为减函数,并且在(-1,0)上为增函数?
题目详情
已知函数f(x)=x^2+1,且g(x)=f[f(x)],G(x)=g(x)-af(x)
已知函数f(x)=x^2+1且g(x)=f[f(x)],G(x)=g(x)-af(x).试问是否存在实数a使得G(x)在(负无穷,-1)上为减函数,并且在(-1,0)上为增函数?
已知函数f(x)=x^2+1且g(x)=f[f(x)],G(x)=g(x)-af(x).试问是否存在实数a使得G(x)在(负无穷,-1)上为减函数,并且在(-1,0)上为增函数?
▼优质解答
答案和解析
G(x)=g(x)-af(x)=(x^2+1)²+1-a(x²+1)=x⁴+(2-a)x²+1-a
G'(x)=4x³+2(2-a)x
若G(x)在(负无穷,-1)上为减函数,并且在(-1,0)上为增函数
则G'(-1)=0,即 -4-2(2-a)=0,a=4
此时G'(x)=4x³-4)x=4x(x+1)(x-1)
x∈(-∞,-1) 时 G'(x)<0,G(x)为减函数
x∈(-1,0) 时 G'(x)>0,G(x)为增函数
所以,存在实数a=4使得G(x)在(负无穷,-1)上为
减函数,并且在(-1,0)上为增函数.
G'(x)=4x³+2(2-a)x
若G(x)在(负无穷,-1)上为减函数,并且在(-1,0)上为增函数
则G'(-1)=0,即 -4-2(2-a)=0,a=4
此时G'(x)=4x³-4)x=4x(x+1)(x-1)
x∈(-∞,-1) 时 G'(x)<0,G(x)为减函数
x∈(-1,0) 时 G'(x)>0,G(x)为增函数
所以,存在实数a=4使得G(x)在(负无穷,-1)上为
减函数,并且在(-1,0)上为增函数.
看了已知函数f(x)=x^2+1,...的网友还看了以下:
(1),设g(x)=1+x,且当x≠0时,f(g(x))=(1-x)/x,求f(1/2)(2),f 2020-04-26 …
\\x0d\\x0d\\x0d\\x0d\\x0d\\x0df(x)与g(x)是定义在R上的两个可 2020-05-13 …
1、已知函数f(x)=ax^5+bx^3+cx+5(abc都是常数),且f(5)=9,求f(-5) 2020-05-14 …
数学题已知函数f(x)=lnx,g(x)=a/x(a>0),设F(x)=f(x)+g(x).已知函 2020-06-08 …
高数求导问题设f(x)和g(x)是在R上定义的函数,且具有如下性质:(1)f(x+y)=f(x)g 2020-06-18 …
设函数f(x)和g(x)分别是R上的偶函数和奇函数,则下列结论恒成立的是().设函数f(x)和g( 2020-07-08 …
导数乘法证明中h是什么意思?(f(x)g(x))'=lim(h→0)[f(x+h)g(x+h)-f 2020-07-22 …
若函数f(x),g(x)的定义域都是R,则f(x)>g(x)(x∈R)的充要条件是?A.存在一个属 2020-08-02 …
这个数学题如何做?设f(X)和g(X)均为周期函数,f(X)的周期为2,g(X)的周期为3;求:f( 2020-11-06 …
对于函数h(x)和g(x)定义"*"运算法则如下h(x)g(x)=g(x).若h(x)=-x^2+4 2020-11-07 …