早教吧 育儿知识 作业答案 考试题库 百科 知识分享

结合具体的数,通过特例进行归纳,然后判断下列说法的对错,认为对的,说明理由,认为错的,举出反例.(1)任何一个数与它的相反数的和都为O;(2)任何一个数a(a≠0)与它的倒数

题目详情
结合具体的数,通过特例进行归纳,然后判断下列说法的对错,认为对的,说明理由,认为错的,举出反例.
(1)任何一个数与它的相反数的和都为O;
(2)任何一个数a(a≠0)与它的倒数的积可能是1也可能是-1;
(3)如果a大于b(a<0,b<0).那么a的倒数大于b的倒数.
▼优质解答
答案和解析
(1)是正确的.
假设a为任意有理数,则它的相反数是-a,
所以a+(-a)=0,
所以(1)的说法是正确的;

(2)是错误的.
例如:a的倒数是
1
a
,则a×
1
a
=1,
-a的倒数是-
1
a
(−a)×(−
1
a
)=1,(7分)
a(a≠o)的倒数与a的积只能是1,
所以(2)的说法是错误的;

(3)是错误的.
例如:a=-1,b=-2,则a>b,
而-1的倒数是-1,-2的倒数是
1
2

显然:-1<
1
2

1
a
1
b

所以(3)的说法是错误的.