早教吧作业答案频道 -->数学-->
已知f(x)在[0,1]连续,(0,1)可导,且f(0)=0,f(1)=1/2,试证明存在不同的h,j使得f'(h)+f'(j)=h+j
题目详情
已知f(x)在[0,1]连续,(0,1)可导,且f(0)=0,f(1)=1/2,试证明存在不同的h,j使得f'(h)+f'(j)=h+j
▼优质解答
答案和解析
可以这样做:构造F1(x)=f(x)-x^2/2-(f(1/2)-1/8)*(2x) 则F1(0)=F1(1/2)=0 所以存在h属于(0,1/2)
使得(F1)'(h)=0 即f'(h)-h=2(f(1/2)-1/8)
再构造F2(x)=f(x)-x^2/2-(f(1/2)-1/8)*2(1-x) 则F2(1)=F1(1/2)=0 所以存在j属于(1/2,1)
使得(F2)'(h)=0 即f'(j)-j=-2(f(1/2)-1/8)
所以存在不同的h,j 使得f'(h)+f'(j)=h+j
使得(F1)'(h)=0 即f'(h)-h=2(f(1/2)-1/8)
再构造F2(x)=f(x)-x^2/2-(f(1/2)-1/8)*2(1-x) 则F2(1)=F1(1/2)=0 所以存在j属于(1/2,1)
使得(F2)'(h)=0 即f'(j)-j=-2(f(1/2)-1/8)
所以存在不同的h,j 使得f'(h)+f'(j)=h+j
看了 已知f(x)在[0,1]连续...的网友还看了以下:
设函数f(x)在x=a的某个邻域内有定义,则f(x)在x=a处可导的一个充分条件是?请写出分析过程! 2020-03-30 …
已知f(x)在[0,1]连续,(0,1)可导,且f(0)=0,f(1)=1/2,试证明存在不同的h 2020-05-14 …
h[f(x+1/h)-f(a)]一道关于导数的问题h[f(x+1/h)-f(a)],h趋于正无穷? 2020-06-10 …
紧急求助高等微积分问题问题1如果limf(x0+h)-f(x0-h)--------------- 2020-06-10 …
f(x)在x=a的某个领域内有定义,则他在x=a处可导的一个充分条件是当h趋于0,lin[f(a+ 2020-07-31 …
问一个高等数学的问题...设f''(x)存在,求证lim(h→0)[f(x+2h)-2f(x+h)+ 2020-10-31 …
确定f(x)在点x=0可导,非常迷惑,求教大神,非常感谢~lim[f(2h)-f(h)]/h存在,不 2020-11-03 …
求导不同思路引起的不同结果习题:设f(x)的二阶导数存在,求lim[f(x+2h)-2f(x+h)+ 2020-11-03 …
(4七1k•松江区右模)定义:对于函数f(h),若存在非零常数人,T,使函数f(h)对于定义域内的任 2020-12-08 …
对于函数f(x),若limf(x+h)-f(x-h)/h存在时候(h趋近于0,h为增量),是否f'( 2020-12-27 …