早教吧作业答案频道 -->数学-->
化简逻辑函数Y=AB+BCDE+AC+BC为最简与或式.逻辑设计,
题目详情
化简逻辑函数Y=AB + BCDE + AC + BC为最简与或式.
逻辑设计,
逻辑设计,
▼优质解答
答案和解析
Y=AB + AC + BC
求函数最简“与-或”表达式
(1)一般步骤:
第一步:作出函数的卡诺图.
第二步:在卡诺图上圈出函数的全部质蕴涵项.按照卡诺图上最小项的合并规律,对函数F卡诺图中的1方格画卡诺圈.为了圈出全部质蕴涵项,画卡诺圈时在满足合并规律的前题下应尽可能大,若卡诺圈不可能被更大的卡诺圈包围,则对应的“与”项为质蕴涵项.
第三步:从全部质蕴涵项中找出所有必要质蕴涵项.在卡诺图上只被一个卡诺圈包围的最小项被称为必要最小项,包含必要最小项的质蕴涵项即必要质蕴涵项.为了保证所得结果无一遗漏地覆盖函数的所有最小项,函数表达式中必须包含所有必要质蕴涵项.
第四步:求出函数的最简质蕴涵项集.若函数的所有必要质蕴涵项尚不能覆盖卡诺图上的所有1方格,则从剩余质蕴涵项中找出最简的所需质蕴涵项,使它和必要质蕴涵项一起构成函数的最小覆盖.
求函数最简“与-或”表达式
(1)一般步骤:
第一步:作出函数的卡诺图.
第二步:在卡诺图上圈出函数的全部质蕴涵项.按照卡诺图上最小项的合并规律,对函数F卡诺图中的1方格画卡诺圈.为了圈出全部质蕴涵项,画卡诺圈时在满足合并规律的前题下应尽可能大,若卡诺圈不可能被更大的卡诺圈包围,则对应的“与”项为质蕴涵项.
第三步:从全部质蕴涵项中找出所有必要质蕴涵项.在卡诺图上只被一个卡诺圈包围的最小项被称为必要最小项,包含必要最小项的质蕴涵项即必要质蕴涵项.为了保证所得结果无一遗漏地覆盖函数的所有最小项,函数表达式中必须包含所有必要质蕴涵项.
第四步:求出函数的最简质蕴涵项集.若函数的所有必要质蕴涵项尚不能覆盖卡诺图上的所有1方格,则从剩余质蕴涵项中找出最简的所需质蕴涵项,使它和必要质蕴涵项一起构成函数的最小覆盖.
看了化简逻辑函数Y=AB+BCDE...的网友还看了以下:
如何证明矩阵分析中的下题.设A为实数(或复数)m*n矩阵,易证:齐次线性方程组Ax=0的所有解(包 2020-05-12 …
已知函数f(x)为奇函数,x>0时为增函数且f(2)=0,则{x|f(x-2)>0}=()A.{x 2020-06-09 …
已知c>0,且c≠1,设p:函数y=cx在R上单调递减;q:函数f(x)=x2-2cx+1在(12 2020-06-16 …
两个正整数a,b的最大公因数为c,最小公倍数为d,c不=1,c不=a或b,c+d=187,a+b= 2020-07-18 …
EXCEL中,B、C、D三列为正数或负数,要求:B、C、D三列为正时,E=A+B+C+D,B、C、 2020-07-25 …
已知a,b,c(a<b<c)成等差数列,将其中两个数交换,得到的三个数依次成等比数列,则(a²+c 2020-07-28 …
空集等于{x|x的平方+1=0x属于实数集},集合{a,b,c}的非空子集数为什么是7呢?为什么空 2020-07-30 …
如图,由下列实验可得()A.方程两边都加上或都减去同一个数或同一个整式,方程的解不变B.方程两边都 2020-08-02 …
线性代数矩阵方程AXB=CX=A^(-1)CB^(-1)为什么上式是这样而不是B或C在前面,线性代数 2020-11-06 …
若方程x-8除以x-7减去1除以7-x=8有增根,则增根是..若a、b互为相反数,c、d互为倒数,m 2020-11-06 …